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i 
 

The objectives of the Science laboratory program at USMA are to develop in each cadet: 
 

♦ The ability to operate safely in a science laboratory. 

♦ The skill of meticulous, careful, and accurate observation. 

♦ The ability to ask questions about what he/she sees, hears, and reads. 

♦ The ability to formulate questions for which data can be obtained. 

♦ The skills necessary to obtain the quantitative data to answer questions. 

♦ The ability to form conclusions from data. 

♦ The ability to use evidence to back up conclusions. 

♦ The ability to defend conclusions both orally and in writing. 

♦ The ability to adapt a concept learned in one context to another situation. 

♦ A basic knowledge of the principles of how to design a research effort. 

♦ A realization of how scientific knowledge is obtained. 

♦ A realization of the logical thinking process involved in scientific efforts.  
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Chapter 1 
 

Safety 
 
A. General 
 
     Safety in the laboratory is the responsibility and concern of all present.  Unsafe practices and 
accidents endanger cadets and instructors alike.  The best safety precautions are a thinking mind 
and a concern for the work being accomplished. Always follow these general safety practices: 
 
    1.  Always follow procedures exactly as outlined in this manual, unless told otherwise by your 
instructor.  Deviation from stated procedures, even those that might seem minor, may cause 
serious accidents.  For example, potassium cyanide will release the toxic gas hydrogen cyanide 
in an acidic solution, but is safe to use in a basic solution.   
 
    2.  In the event of an accident notify your instructor immediately or have someone else 
notify him or her.   
 
    3.  You are required by the chemical hygiene plan to wash your hands before leaving the 
laboratory.  You will handle a variety of chemical reagents in the laboratory, many of which 
could harm you through contact with the skin or accidental ingestion.  Wash your hands 
frequently when handling reagents; wash your hands anytime you suspect you may have come 
into contact with chemicals.   
 
    4.  Protect your eyes and skin.  You must wear your goggles 100% of the time when in lab to 
prevent eye injury (Figure 1-1).  Skin is protected by proper wear of laboratory aprons/coats.  
Additionally, long pants are required at all times.  Over-pants are available for cadets with 
temporary physical limitations that require the wear of short pants (e.g. bulky leg casts).  Since 
contact lenses interfere with the removal of chemicals from your eyes, contact lenses are 
prohibited in lab.  Never wipe your face or eyes with your hands while in the laboratory.  If you 
feel the need to wipe your face, first wash your hands.  If you feel you need to remove your 
goggles, wash your hands then step completely outside the lab before removing your goggles. 

                                             

Figure 1-1.  Lab Goggles
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    5.  Never eat or drink in the lab.  A water fountain is located in the hallway.  No chewing 
gum or tobacco products are allowed in lab. 

    6.  To work safely with chemicals you must know the potential hazards associated with their 
use.  Safety Data Sheets (SDSs) are a valuable source of safety information about laboratory 
chemicals. Chemical manufacturers provide SDSs for each chemical purchased and used in the 
laboratory.  Each lab has a yellow binder with a copy of the SDS for every chemical you will 
encounter in General Chemistry.  Appendix D provides detailed information about SDSs. 

 
B.  Burns 
 
    1.  Heat Burns 
 
        a) Cause.  The most common laboratory accident is a burn resulting from touching a piece 
of hot equipment.  Another cause of burns is accidental contact with a flame or hotplate. 
 
        b) Prevention.  It is difficult to see a properly adjusted burner flame.  Just as you should 
always assume a weapon is loaded, always assume equipment is turned ON and HOT.  Never 
reach across an open flame.  The metal barrel of the burner becomes very hot during operation; 
do not handle the burner by the barrel. 
 
    2.  Chemical Burns 
 
        a)  Cause.  Another common burn is a chemical burn, which is usually caused by careless 
handling of chemicals such as acids and bases.  A spill on skin or clothing must be thoroughly 
rinsed as soon as it occurs.  Inform your instructor immediately if you spill a chemical on 
your clothing or skin.    
 
        b) Prevention 
 
 i)  To prevent spills, carefully secure glassware with the proper clamp.  If your set-up is 
knocked over, get out of the way immediately.  Glassware can be replaced--you can't.   
 
 ii)  Caution when transferring liquids can prevent chemical spills and burns.  Carefully 
dispose of excess reagents in the designated waste container using the funnel provided. 
 
 iii)  Spattering.  Never add water to an acid.  This is especially important in the dilution 
of a concentrated acid.  To dilute an acid, pour a small amount of the acid down the side of the 
container of water and carefully mix before adding another portion.  In this way, if a violent 
reaction causes a splatter of liquid, the majority of the liquid will be water rather than acid.  
Continue to add the acid in small portions.  Dilution of an acid often liberates a large quantity of 
heat, therefore the container should never be held in your hand. 
 
 iv)  "Bumping".  Bumping occurs when a large vapor bubble forms rapidly and escapes 
from a heated test tube, taking a quantity of liquid with it (Figure 1-2).  In some cases the heated 
liquid may suddenly escape from the test tube and injure someone in the path of the splash.  
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When heating liquids in a test tube, heat slowly and always point the test tube away from any 
person, either next to you or on the opposite lab bench, and away from sensitive equipment.  The 
same precautions apply when heating liquids in beakers or flasks.   

 
    3.  Corrective Measures 
 
        a)  If any chemical come in contact with the eye, immediately proceed to the eye wash 
(Figure 1-3), depress the lever to the right of the basin, and flush the eye with water.  Continue to 
flush until told to stop or for 15 minutes.  Be prepared to assist other personnel.  You may have 
to physically hold your eyes open with your hands.  If you are assisting someone at the eyewash, 
you may have to force open their eyes to allow water to flush the eyes. 

 
 

Figure 1-2.  Bumping of a heated liquid in a test tube

Thenewboston (2013, June 17).  Chemistry Lab -2- Test Tubes [video file].  Retrieved from 
http://www.youtube.com/watch?v=HQGIr89aGFQ

Figure 1-3.  Eyewash
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        b) Spills on clothing are to be flushed with water.  Use plenty of water as the clothing may 
retain the chemical and possibly cause injury to the skin underneath.  
In the event of a major spill on clothing, immediately move to the 
safety shower (Figure 1-4) and pull the chain to start the flow of water.  
Remove contaminated clothing.   
 
        c) Spills on desktops and floors are to be wiped up with a wet 
sponge, rinsed, and wiped up again.  Rinse the sponge to remove 
chemicals.  If the spill is a concentrated acid, first pour sodium 
bicarbonate, NaHCO3, over the area of the spill to neutralize the acid 
before wiping it up. 

 
C. Fires 
 
    1. Prevention.  A fire can be a dangerous situation, especially in a 
laboratory environment where chemicals may react and explode when 
heated.  Every person in the lab should know how to respond in the 
event of a fire. 
 
        a) Know the location of fire-fighting equipment (Figure 1-5) and 
safety showers (Figure 1-4) in the laboratory. 
 

        b) Know the location of exits from the 
laboratory. 
 
        c) Wear lab aprons/coats and goggles at 
all times.  When wearing long-sleeved 
shirts, keep the sleeves rolled down and 
buttoned. 
 
        d) Do not use flammable chemicals such as ether, acetone, carbon 
disulfide, or hydrogen gas in the vicinity of an open flame. 
 
        e) When you use a flame, be sure to remove all hazards from the 
area before ignition. 
 
        f) Never leave a burner or hot plate unattended. 
 
    2. Corrective Action.  Should a fire occur, immediately give a verbal 
alarm and follow these guidelines: 
 

        a) Turn off all burners in the area and remove all flammable 
chemicals if you can do so without risk of injury. 

        b) Do not try to extinguish a fire if it is too large or you do not have the proper equipment.  
Leave the area immediately. 

Shower head

Shower Lever

Figure 1-4.  Safety Shower

Figure 1-5.  Fire Extinguisher
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        c) If clothing is on fire use the safety shower (Figure 1-4). 
 
        d) The size of the fire and the substance that is burning will determine the method to 
extinguish the fire.  Small quantities of flammable liquid can be extinguished by covering with a 
glass plate, watch glass, or beaker.  This will extinguish the fire by depriving it of oxygen.  
Allow the glass cover to remain in place for several minutes to ensure flammable material will 
not ignite again.  The carbon dioxide fire extinguisher is used on larger chemical fires.  The 
metal safety ring must be pulled to activate the extinguisher.  Direct the spray at the base of the 
flames. 
 
D. Vapor Hazards 
 
    1. Prevention.  The vapors of some chemical reagents 
are hazardous.  You will be informed of the specific 
dangers as they are encountered. Do not attempt to do an 
odor test unless specifically told to do so by the laboratory 
procedure or by the instructor.  The proper procedure to 
test an odor is called “wafting”.  When attempting to 
smell the odor produced by a substance or chemical 
reaction, use the method shown in Figure 1-6.  Keep your 
head and nose away from the opening of the container; 
use the motion of your hand to bring the vapor to your 
nose. 
 
   2.  Corrective Action.  If, in the course of a reaction involving chemicals with potentially 
dangerous vapors, you feel unusual in any way, move quickly away from the area of the reaction 
or chemical and inform your instructor.  If you notice anyone going faint, remove him/her from 
the immediate area and notify the closest instructor. 
 
E. Cuts 
 
    1.  Prevention.  To prevent injury, follow the guidelines below. 
 
        a) Secure laboratory glassware properly to minimize accidental breakage.  Always secure 
thermometers with a thermometer clamp. 
 
        b) Keep work areas neat and organized, with glassware away from the edges of the 
laboratory benches, or areas used for preparing laboratory reports. 
    
        c) Remove droppers and stirring rods from containers when not in use. 
        
        d) Inspect glassware carefully before use for cracks, nicks, or other defects. 
      
        e) Whenever you find glass tubing that is "frozen", such as stoppers stuck in bottles, do not 
use force to separate them.  Take them to your instructor. 
 

Figure 1-6.  Wafting of vapors
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    2.  Corrective Action 
 
        a) If you should break glassware, notify your instructor as soon as possible.  Ensure others 
are aware of the breakage and are kept clear of the area.  Do not attempt to clean up the breakage 
yourself. 
 
        b) If directed to clean up breakage, use extreme caution when picking up fragments, 
particularly in a wet sink where glass may be difficult to see.  Check areas carefully to ensure 
that all fragments have been picked up.  Dispose of all glass fragments, regardless of size, in the 
cardboard bin clearly designated for broken glass. 
 
        c)  Report any cuts to your instructor immediately.  Damage to skin and surrounding tissues 
from glass fragments may be aggravated by the presence of toxic chemicals.   
 
F.  Lasers 
 
     The most common laser that you will come in contact with is a Class II Helium-Neon (HeNe) 
laser.  In the event that you encounter a different type of laser in the laboratory, the primary 
operator or your instructor will brief you on the hazards of that particular type of laser.  The 
HeNe laser produces a monochromatic, high intensity collimated beam of light that is hazardous 
to your retina.  To avoid injury: 
 
    1.  Treat the laser as a direct fire weapon. 
 
    2.  Do not stare into the direct or specularly reflected laser beam. 
 
    3.  Do not set up the laser at eye level.  Direct the laser beam between nametag and belt buckle 
level.  All cadets should stand during experiments involving lasers. 
 
    4.  Do not walk through the beam; do not break the beam with your hand. 
 
    5.  Take particular care when aligning the laser; predict and verify where the termination of 
each reflection will be.  Control the laser beam to a safe, confined area. 
 
    6.  Do not leave the laser unattended; turn the laser off when not in use. 
 
    7.  Do not disassemble the laser. 
 
G.  Electricity 
 
    1.  Chemistry.  In Chemistry you may use a volt-ohm meters or low voltage power source.  
The D.C. power source, if not properly assembled, can deliver a damaging and painful shock to 
the user.  Be sure your instructor approves your assembly prior to plugging in the power source 
or beginning the experiment.  (See Table 1-1) 
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    2.  Physics.  Each physics laboratory bench is equipped with an electrical transfer station that 
is capable of delivering enough current to kill you or your partners.  Do not touch the bench 
power supply prior to your instructor verifying your equipment configuration and briefing you 
on its operation.  Remember that the current is what kills you, not the voltage.  The voltage 
is important only in that it determines how much current will flow through your body’s 
resistance.  (Refer to the Table 1-1 for the effects of electric current values you may encounter.) 
 

Value (mA) Human Response 
8 – 15 Painful shock; individual can let go at will. 
15 – 20 Painful shock; muscular control is lost; individual cannot let go. 

 
20 – 75 Painful shock; severe muscular contractions with breathing extremely 

difficult.  The person cannot let go. 
100 – 200 Painful shock; ventricular fibrillation of the heart.  (This is a fatal 

heart condition for which there is no known remedy or resuscitation – 
DEATH.) 

Table 1-1.  Current Values and the Human Response. 

H. Radiation 
 
     In PH205/255 you will be using a radiation button source.  The dosage of radiation that you 
will be exposed to during the lab is very small, but precautions should always be taken when 
dealing with radiation.   
 
    1.  Principles of Radiation Safety.  ALARA is a philosophy used when working with radiation.  
It is when one strives to keep exposure As Low As Reasonably Achievable.  Considering 
ALARA, we ensure that time of exposure is always be minimized, and distance from the 
radiation source and shielding from the source are maximized. 
 
    2.  Safety Precautions: 
 
        a)  Do not handle radiation sources unnecessarily. 
 
        b)  Do not put radiation sources in your pocket or mouth. 
 
        c)  Wash hands after handling radiation sources. 
 
        d)  Report any unsafe activities to the instructor.
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Chapter 2  
 

Characteristics and Use of Laboratory Equipment 
 

A.  Introduction 
 

     It is essential to develop good habits to avoid contamination and prevent accidents when 
working in a laboratory.  Below are the good habits you are expected to develop and maintain 
when working in laboratories at West Point. 
 

• Follow all prudent safety practices as directed by your instructor, the laboratory staff, and 
good common sense. 

• Use caution when powering devices on and off.  Always know if your device is turned on 
or if the device is connected to an energy source. 

• Before use, wash all glassware with soapy water, rinse thoroughly, and perform a final 
rinse with distilled water three times. Distilled water is very expensive to produce and 
should not be used in great quantities, but only for final rinsing and making solutions. 

• Replace caps on all reagent containers (both liquids and solids) when not in immediate 
use. 

• Only place a clean utensil inside a reagent container or stock bottle. 
• Never return used reagents to their original container, but dispose of extra reagent in an 

appropriate waste container. 
• Dispose of all solutions/waste in an appropriate waste container.  It’s never a bad idea to 

ask if you aren’t sure of proper waste disposal procedures. 
• Clean up any spilled reagent immediately; maintain a neat working area and clean 

common use equipment, such as balances, after each use. 
• Clean all equipment before returning it to its designated location.  
• Wash your hands after each and every lab. 

 
     Understanding the capabilities and limitations of your laboratory equipment is an essential 
basic science skill.  Selecting the appropriate device and knowing how to use it correctly will 
allow you to conduct your experiments quickly and efficiently.  The precision of laboratory 
measuring devices discussed in this chapter can be found in Tables 2-1 through 2-4. 
 
     Each laboratory position is stocked with basic supplies.  Learn the names of the pieces of 
laboratory equipment to make certain that you will always be using the correct equipment.  It is 
your responsibility to see that all equipment at your assigned station is in good condition and 
ready for use by the next cadet assigned to that lab station.  To keep the set of equipment 
complete for the next cadet, it is essential that any equipment shortage or breakage be reported to 
the instructor immediately so that replacement can be made.  At the completion of each 
laboratory period thoroughly clean all equipment.   
 
 
 



 

2-2 
 

B. Chemistry Laboratory Equipment  
 
    1.  Measuring Mass.  Balances are precision instruments and proper care must be exercised in 
using them.  Before using a balance, familiarize yourself with good practices common to all 
balances.  Ensure the balance is level using the bubble level integrated into the instrument.  Do 
not move or otherwise jar the balance.  Gently place (do not drop) objects onto the balance pan.  
Never place chemicals directly on the balance pan as they will corrode and contaminate the pan 
in addition to causing incorrect results due to air currents and buoyancy errors.  The balance pan 
should be kept perfectly clean by dusting with a brush after each use.  Clean the workspace 
surrounding the balance to keep it free of dust and chemical residue. 
 
        a) Sartorius Balance.  The mass of a sample between 0.01 grams and 320 grams will 
normally be determined on the Sartorius Balance Model ED323S, shown in Figure 2-1. To use 
the balance, follow the guidelines below. 
 
  i.  Ensure the balance is level by checking to 
see if the bubble just above the yellow Tare button in 
the front left corner of the device is centered in the 
black ring.  Remove the stainless steel lid.  If necessary 
due to the large size of the substance to be measured, 
remove the glass shield.  The glass shield and lid 
minimize balance fluctuations brought about by air 
flow and the instrument should be used with both in 
place when feasible.  Press the blue button to turn the 
balance on or to bring it out of Standby mode. 
 
            ii.  Before placing your sample on the pan, set 
the reading to 0.000 g by pressing either of the two 
yellow Tare buttons. 
 
 iii.  Place a container on the balance pan (e.g. weigh paper, plastic weigh boat, glass 
container).  Record the digital results if you need to know the mass of container. 

 iv.  Press one of the two yellow Tare buttons again to return the balance to 0.000 g.  
Taring deducts the mass of a container from the total mass of the container and its contents once 
the sample is added. 

 v.  Add your sample to the container and record the digital weight after the reading 
stabilizes. 

 vi.  Remove your sample and container from the balance.  Use the brush to remove any 
spilled reagent from the balance area.  Replace the stainless steel cover and turn the balance off if 
the lab is finished for the period.  Clean the area around the balance as needed. 
 

Figure 2-1.  Sartorius Balance Model ED323S
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        b)  Sartorius Balance Model H110. This balance, shown in Figure 2-2, may be used to 
determine the mass of a sample between 0.1 mg (0.0001 g) and 110 grams.  To use the balance, 
follow the guidelines below. 
 
 i.  Ensure the balance is level by examining 
the bubble in the back left corner of the device.  
Press the yellow on/off button to turn the balance 
on. 
 
 ii.  Before placing your sample on the pan, 
set the reading to 0.0000 g by pressing the red  bar 
labeled T for tare. 
 
 iii.  Open the sliding glass door on one or 
both sides of the balance.  The glass minimizes 
balance fluctuations brought about by air flow and 
the mass should be read only with all glass doors 
closed.  Place a container on the balance pan (e.g. 
weigh paper or plastic weigh boat).  Record digital 
results if you need to know the mass of container. 

 iv.  Press the red T bar again to return the 
balance to 0.000 g.  Taring deducts the mass of a 
container from the total mass of the container and 
its contents once the sample is added. 

 v.  Add your sample to the container and record the digital weight after the reading 
stabilizes.  You may notice dramatic fluctuations in the last digit, particularly if the balance is 
exposed to air currents or vibrations. 

 vi.  Remove your sample and container from the balance.  Use the brush to remove any 
spilled reagent from the balance area.  After cleaning the balance, ensure all glass doors are 
closed.  Turn the balance off if the lab is finished for the period.  Clean the area around the 
balance as needed. 

    2.  Measuring Volume of a Liquid and Handling Liquids in the Laboratory 
 
        a)  Handling Liquids.   
 
 i.  Contamination.  Protect reagent bottles from contamination.  Never put spatulas, 
eyedroppers, stirring rods, pipets, or anything else into a reagent bottle.  Try to avoid taking a 
large excess of the reagent.  However, if you should err and take more than you need, do not 
return the excess to the original bottle.  Put the excess into a waste container. Use caution 
when handling container lids.  Be mindful at all times of the location of the lid and handle lids in 
accordance with the guidelines shown in Figure 2-3 to prevent contamination.  Always replace 
caps when not in use. 

Figure 2-2.  Sartorius Balance Model H110
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 ii.  Labels.  Always read the label on the reagent bottle before using it.  When pouring a 
liquid reagent from the bottle, hold the bottle with the label up so that the reagent is poured from 
the side of the bottle without the label.  This prevents the label from being soiled should the 
reagent run down the outside of the bottle.  If any reagent is spilled on the outside of the bottle, 
wipe it off before returning the bottle to its original location.   
 
 iii.  Pouring.  Do not attempt to transfer reagents directly from the reagent bottle to a test 
tube or other small-mouthed container.  Liquid reagents should be poured into a beaker first and 
then into the test tube.   

         

        b)  Reading a Meniscus.  Several types of glassware are available for measuring liquids, 
depending on the precision desired.  To use any of these devices properly, it is necessary to 

Figure 2-3.  Handling Stoppers and Lids

Incorrect Correct

For a correct reading of 1.40 mL, 
observe the meniscus at eye-level

If read at the top of the liquid’s 
contact with the glass, the 
reading would be too low

Figure 2-4.  Reading a meniscus
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understand the nature of the meniscus. The surface of a liquid is called the meniscus.  Water and 
aqueous solutions commonly used in introductory labs form a concave meniscus with the center 
of the surface at a lower level than the edges, because the liquid is attracted to the glass by 
similar intermolecular forces.  Some liquids, such as mercury, form a convex meniscus with the 
center of the surface of the liquid at a higher level than the edges because the liquid has no 
appreciable attraction for glass.  To maintain consistency, scientists arbitrarily decided to read 
the bottom of the concave meniscus and the top of the convex meniscus as shown in Figure 2-4.  
Always read the liquid volume with your eyes at the level of the meniscus.  Otherwise, the 
calibration markings become parallactic and you will obtain inaccurate readings. 
 
        c)  Approximate measurements of liquid volume.  While accurate measurements of volume 
are important, time is wasted 
making extremely accurate 
measurements of volumes when 
approximate measurements would 
be sufficient.  The approximate 
measuring devices described below 
may be used throughout the 
laboratory course unless more 
accurate measurements are 
required. 
 
         i. Dropper.  Each lab station 
is supplied with droppers, as shown 
in Figure 2-5.  A dropper delivers 
drops with a volume of about 
1/20th of a milliliter (20 drops ≅ 1 
mL; 1 drop is roughly 50 µL).  One 
full squeeze of a dropper will draw 
up a maximum of about 1 mL of 
solution.  A dropper is normally used to 

measure approximate volumes of no more than 3-5 
milliliters.   
 
     When using a dropper to transfer a reagent, use 
the technique illustrated in Figure 2-6.  Add a drop 
or two and allow it to run down the side of the test 
tube into the liquid, and then shake to mix 
thoroughly.  Do not touch the test tube with the tip 
of the dropper.  Never use the same dropper for two 
different reagents.  If you find a dropper missing, or 
if you are in doubt as to where a dropper belongs, 
request a replacement dropper from your instructor.  

Never return a chemical to its original container once it 
has been withdrawn.  Expel the unused liquid into a waste beaker.  
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 ii. Graduated Beakers and Flasks.  Each lab station has a drawer containing multiple 
beakers and Erlenmeyer flasks (Figure 2-5).  Remember these containers, while useful for 
transporting or transferring liquids, provide you only a rough guide to the amount of liquid in the 
container.  They have a 5% error associated with their graduations.  If you are asked to precisely 
measure a volume of liquid, you will need to use a device designed for precise measurements, 
described below.     
 
        d)  Precise Measurements of liquid 
Volume.  In experiments requiring more 
accurate measurements of volume, the 
following equipment is available:    
 
 i.  Graduated Cylinder.  Each lab 
station has a drawer containing two 
graduated cylinders, as shown in Figure 
2-7.  A graduated cylinder is used to 
measure volume.  For volumes smaller 
than 10 mL, the volume that adheres to 
the walls of the graduated cylinder is 
appreciable.  The 50 mL graduated 
cylinder located in your desk is 
calibrated in 1-mL increments.  Read the 
volume to the nearest 0.1 mL but record 
the volume as your reading ± 0.5 mL, as 
that is the stated precision of the 
cylinder, as shown in Table 2-1. 
 
 ii. Volumetric Pipet.  Each lab station has a drawer containing one 10 mL volumetric 
pipet and associated pump as shown in Figure 2-7.  A volumetric pipet is used to measure one 
volume accurately. The volume of the solution to be delivered is made to the only calibration 
mark etched on the pipet.  To measure liquid with a volumetric pipet, hold the glass pipet near 
the widest of the two ends and use your fingertips to gently but firmly insert the glass pipet into 
the rubber gasket end of the pipet pump.  Ensure you gently grasp the glass pipet near the end 
close to the pump.  Holding a pipet incorrectly while attaching it to the pump can result in a deep 
puncture wound if too much force is applied.  Holding the pipet with the narrow tip in the 
desired liquid, rotate the thumbwheel downwards.  This will cause the liquid to enter the pipet 
and simultaneously for the top of the pipet pump to rise. Continue to draw the liquid into the 
pipet until the meniscus is just above the calibration mark.  Do NOT draw the solution into the 
pipet pump itself.  While holding the pipet vertically over a clean waste beaker, rotate the 
thumbwheel upwards until the bottom of the meniscus reaches the calibration mark.  The tip of 
the pipet is then touched to the side of the clean waste beaker to remove any excess solution.  
Without losing any solution from the pipet, transfer it vertically to the receiving vessel.  
Dispense the solution down the side of the receiving vessel by pressing the side lever and touch 
the tip to the side of the vessel to remove the last drop of liquid from the pipet.  Any solution 
remaining in the tip is not to be blown out. 
  

Volumetric 
flasks (3)

Volumetric 
flasks (2)

Erlenmeyer 
flask

Figure 2-7.  Second Drawer of Lab Station
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  iii. Repipets.  A repipet (Figure 2-8), is a calibrated 
dispenser used to transfer fixed volumes of liquids up to 20mL.  
The repipet is usually attached to the top of a large bottle of stock 
solution from which a measured amount of solution can then be 
drawn directly without pouring the solution into a secondary 
container, thus minimizing waste.  The repipet will normally be 
adjusted by your instructor and primed to deliver the appropriate 
amount of reagent.  To use the repipet, lift the cylinder straight up 
until it stops, then, making certain to hold the desired glassware 
under the outlet tip, depress the cylinder completely to release the 
measured amount of liquid. 
 
 iv.  Burets.  Each lab station has a 25 mL buret, as shown 
in Figure 2-7, a buret clamp, Figure 2-9, and a cabinet containing 
a buret stand, Figure 2-10.  A buret is a graduated glass tube with 
a stopcock at the lower end for controlling the flow of solution.  

Always use a buret clamp to secure a buret on the support stand as shown in Figure 2-11.  Before 
using a buret, first rinse it three times with roughly 5 mL portions of the solution with which it 
will be filled, making certain that all inner surfaces are wetted with each rinsing.  This prevents 
contamination and dilution of the solution.  These small portions should be drained through the 
tip of the buret into a waste beaker.  Next fill the buret with solution using a glass funnel and 
drain a small amount until the bottom of the meniscus is on the graduated portion of the buret 
and the tip is free of air bubbles. Touch the tip against the side of a clean waste beaker to remove 
the drop clinging to the tip and then take the initial reading.  It is not necessary to have the 
meniscus at zero, but it is important to record a careful reading of the meniscus at the start point 
before dispensing the solution.  

Figure 2-8.  Re-pipet
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Figure 2-9.  Third Drawer of Lab Station
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 iv. Volumetric Flasks.  Volumetric flasks are pear-shaped glass vessels that are calibrated 
to hold a precise volume of liquid when the bottom of the meniscus of the liquid is at the 
calibration mark.  Volumetric flasks are used to prepare solutions with known concentrations.  
Their use is described in the next section. 
 

Table 2-1.  Device Uncertainty Data 
 DEVICE GRADUATION PRECISION 
Mass 
 
 

Sartorius Balance ED323S 0.001 g ± 0.001 g for < 60 g 
± 0.01 g for 60-320 
g 

Sartorius Balance H110 0.0001g ± 0.001 g  
Volume Dropper 20 drops 

≈1squirt≈1mL 
± 0.025 mL 

10 mL Graduated Cylinder 0.2 mL ± 0.2 mL 
50 mL Graduated Cylinder 1 mL ± 0.5 mL 
50/100/250/600 mL beakers 10-50 mL 5% 
250 mL Erlenmeyer flask 10-50 mL 5% 
10 mL volumetric pipet Single mark at 10 mL ± 0.01 mL 
repipet 0.1 mL  ± 0.01 mL 
25 mL buret 0.1 mL  ± 0.01 mL 
50 mL volumetric flask Single mark at 50 mL ± 0.05 mL 
100 mL volumetric flask Single mark at 100 mL ± 0.08 mL 
250 mL volumetric flask Single mark at 250 mL ± 0.12 mL 

Other  alcohol thermometer (0-
100°C) 

1°C ± 0.1°C 

 
 
 

Figure 2-11.  Proper Use of Buret
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    3.  Preparing Solutions 
 
        a)  Aqueous Solution from a Solid.   
 
 i.  In preparing an aqueous solution by dissolving or dissociating a solid in water, place 
the solid in a volumetric flask using a clean, dry funnel. Flush the solid from the funnel into the 
flask with distilled water. When the volumetric flask is 3/4 full, dissolve the solid by swirling.   
 
 ii.  Fill the volumetric flask with distilled water to within one centimeter of the calibration 
mark, remove the funnel, and fill the flask exactly to the mark with a clean dropper.  Stopper the 
flask and invert the flask 10 times to thoroughly mix the contents, ensuring the stopper remains 
seated. 
 
        b)  Aqueous Solution from a Liquid.   
 
 i.  In preparing an aqueous solution from a liquid, pour the liquid into the volumetric 
flask using a clean funnel.  The flask from which the liquid was obtained is washed two or three 
times with a few milliliters of distilled water.  The washings are added to the volumetric flask.  
The funnel and the neck of the volumetric flask are rinsed with distilled water.   
 
 ii.  Fill the volumetric flask with distilled water to within one centimeter of the calibration 
mark, remove the funnel, and fill the flask exactly to the mark with a clean dropper.  Stopper the 
flask and invert the flask 10 times to thoroughly mix the contents, ensuring the stopper remains 
seated. 
 
    4.  Physical Separation of Mixtures 
 
        a)  Solid-Liquid 
 
 i.   Decanting.  Decanting is a method of separating the components of a liquid-solid 
(precipitate) solution.  It is accomplished by allowing the solid to settle to the bottom of the 

vessel (the use of a centrifuge will hasten this) and 
then gently pouring off the liquid, leaving the solid at 
the bottom of the container.  If the precipitate needs to 
be washed, a solvent in which the precipitate is 
insoluble may be added, mixed with the precipitate, 
and poured off in the same manner.  Generally, several 
washings using small volumes of solvent are better 
than one washing using a large volume of solvent.  
When washing small amounts of precipitate in a small 
test tube, it is better to draw the washing solvent off 
with a dropper rather than pouring off the liquid. 
     

 ii.  Filtering.  Filtering is a process used to separate 
a solid (precipitate) from a liquid by passing the liquid through filter paper.  The filter paper will 

Figure 2-12.  Filter Paper
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allow the liquid (filtrate) to pass through but will retain the precipitate (residue) on the filter 
paper.  Correct filtration techniques prevent contamination of solutions and save time.  A 
common type of filtration is using a glass funnel with filter paper, illustrated in Figure 2-12.  
Fold the filter paper in half and then half again.  Spread out the folded paper in the glass funnel 
and wet it with distilled water.  After the filtrate has drained from the precipitate, solvent may be 
added and allowed to drain through the filter paper.  If the washing solvent is water, it can be 
added conveniently from the washing bottle, directing the stream at the filter paper above the 
precipitate. 

 
    5.   pH Determinations and Titration 
 
        a)  pH Test Strips.  In many experiments the volume of liquid to be tested will be small and 
the use of the pH meter described below is not practical.  In this case, it may be appropriate to 
use one of a variety of commercially available pH test strips.  These strips are made using paper 
that has been treated with a substance that will change color within a specific pH range.  These 
test strips are available in a wide variety of pH ranges.  An acceptable procedure is to lay the pH 
strips on a clean, dry surface and extract a drop of the solution with a clean, dry stirring rod.  
Touch each colored square on the strip with the stirring rod and carefully compare the color to 
the provided chart to determine the pH of the solution.   
 
        b)  Indicators.  An indicator is a chemical that changes color depending on the pH of the 
solution to which it is added.  A list of some common indicators, their color changes, and the pH 
range in which this color change occurs can be found in your textbook. 
 
        c)  pH Meter.  The pH meter can be used to directly 
measure the pH of a solution.  Its operation varies depending 
on the model, but generally requires the meter to be 
suspended above a solution with a stir bar to ensure an 
accurate reading.  Each lab station is equipped with a 
heater/stirrer as shown in Figure 2-13 to facilitate thorough 
mixing and an accurate reading.  
 
        d)  Titration.  Titration is a process used to determine a 
variety of information about a solution, including the precise 
concentration.  A buret is used for measuring the added 
solution (titrant).  An Erlenmeyer flask, wide-mouth bottle, 
or beaker may hold the solution being titrated. The titrant is 
added to the solution being titrated until the "equivalence 
point", that is the point where the number of particles required to react completely with the 
solution being titrated have been added, is reached.  It is often impossible to determine the 
equivalence point directly.  In this case, an indicator is added to the solution being titrated.  The 
indicator is selected so that it will undergo a change in color or texture at or near the equivalence 
point.  When the indicator changes color, the "end point" of the titration has been reached.  
Titrations are normally performed in two phases. In the first phase, a fairly rapid addition of the 
titrant is made to determine the approximate volume of the titrant necessary to reach the end 
point of the titration.  Once this approximate volume has been determined, the subsequent runs 

Stirrer/Heater

magnetic 
stir bar

Figure 2-13.  Bottom Drawer
(right side) of Lab Station
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are made fairly rapidly to within about ten milliliters of the end point.  Then the rate of flow is 
decreased to a much slower rate so that the titration may be stopped when the first sign of a 
permanent color change in the indicator occurs.  Subsequent runs are often made to obtain the 
average volume of titrant required to reach the end point. 

 
    6.  Bunsen and Fisher Burners.  The Bunsen burner is used to apply heat in the lab.  The 
burner makes possible the nearly complete combustion of gaseous fuels by providing the correct 
ratio and mixing of fuel and air in the barrel of the 
burner.  Since the Bunsen burner will be used in many of 
the experiments you perform, it is important for you to 
understand how it operates and how to adjust the air and 
gas to obtain maximum temperatures.  Study Figure 2-14 
and be sure that you understand the proper function of the 
components before attempting to use the Bunsen burner.  
Some lab stations are equipped with a Fisher Burner, 
which is the larger of the two burners at those stations 
and is chrome plated.   The Fisher Burner produces a 
larger and hotter flame and should only be used when 
directed.  
 
        a)  Procedures for Lighting a Bunsen Burner 

 i.  While holding the burner upside down, completely close the gas flow regulator by 
rotating the knob to the right (clockwise as you look at the bottom of the burner). 

 ii.  Slightly re-open the gas flow regulator by rotating the knob one-half turn to the 
left (counter-clockwise as you are looking at the bottom of the burner).  Set the burner on the 
benchtop as shown in Figure 2-13 and attach the rubber hose to the gas inlet of the burner and 
the gas valve at your laboratory workstation.   

 iii.  Light a match and hold it away from the burner.   

 iv.  After the match is lit, completely turn on the gas knob at your bench by rotating the 
knob all the way to the left (counter-clockwise).  Immediately bring the burning match to the 
side of the burner and then raise it straight up until the flame is level with the top of the burner.  
The burner should light.   

 v.   Adjust the flame until it becomes almost colorless by manipulating the gas flow 
regulator and the air flow regulators on the burner.  Do not attempt to adjust the burner flame by 
partially opening the gas valve at your workstation.  The gas valve at your workstation should be 
fully open (when in use) or fully closed (when not in use).  Control the flow of gas with the 
burner itself.  When the proper amount of air and gas are entering the burner tube, the flame 
should have a pale blue inner cone with a surrounding pale violet cone.  The hottest part of the 
flame is the area just on top of the inner blue cone.  The coolest area is at the bottom of the cone 
just above the barrel.  If the flame is yellow, you may need to reduce the amount of air by 
partially closing the air flow regulator on the burner.  If the flame is blue, but too large, you may 
need to partially close the gas flow regulator on the burner.   

Figure 2-14.  Bunser Burner
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        b)  Bunsen Burner Safety  

 i.  If the burner does not light on the first attempt shut off the gas knob at your bench by 
turning it all the way to the right.  Check that all rubber tubing connections are tight.  Attempt to 
light the burner again.  If it still doesn't work, consult your instructor.  When you are finished 
using the burner, be sure to completely turn off the gas knob at your workstation. 

 ii.  Hot glassware looks exactly like cold glassware, and hot metal looks like cold 
metal.  Be patient and if in doubt assume the glass or metal is still hot.  While hot glassware 
looks like cold glassware, extremely hot glass may turn red shortly before it begins to melt.  If at 
any time you notice your glassware turning red, immediately remove the heat source. 
 
 iii.  Never use a burner to directly heat volumetric glassware, bottles, or non-heat-
resistant apparatus. 
 
 iv.  Never use an open flame near flammables or combustibles. 
 

 
 v. Snorkel hoods remove fumes produced upon heating.  The snorkels are located above 
the lab bench but should not be touched unless specifically directed.  Ensure your heating set-up 
is not located close enough to the snorkel to melt the plastic cone.  A common set-up for heating 
of a beaker and for heating a reagent in a test tube are shown in Figures 2-15 and 2-16. 
 

Figure 2-16.  Test tube heating

Incorrect
Correct

Figure 2-15.  Common Heating Set-Up

Bunsen burner

Ring Stand

Ring Clamp Wire Gauze

BeakerUtility Clamp



 

2-13 
 

  7.  MicroLabTM.  Each lab station is equipped with a MicroLabTM device and associated clear 
plastic equipment box (Figures 2-17 and 2-18).  You will use MicroLabTM in many experiments.   
The power button for the MicroLabTM device is in the upper right corner of the white box 
covered by a green membrane.  Once the power is turned on, the "o" in the word "MicroLab" 
will light up in green.  When lab is over, always turn off the device to conserve energy.   
    

 
 
 
 
 
 
 
 
C.  Physics Laboratory Equipment  
 
    1.  Triple-Beam Balance.  The majority of triple beam balances in the Physics laboratories are 
O'Haus balances with a resolution of 0.1 grams.  Cadets should verify the zero and ensure the 
cleanliness of the balance before use. 
 
    2. Digital Balance.  The Adam HCB 1502 precision digital balance measures mass rounded to 
the nearest 0.05 g.  This rounding creates uncertainty in mass measurements with this device, 
δm, of ±0.03g. 
 
    3.  Digital Caliper.  The digital calipers used in physics lab rooms have a resolution of .01 mm, 
but based on the manufacture’s specifications, are precise to ±0.03mm. 

 
    4.  HeNe Laser.  The Helium-neon (HeNe) gas lasers used as a collimated, coherent, 
monochromatic light source in physics laboratories are class II, 0.95 mW lasers made by Oriel 
Corporation or Uniphase.  They are not eye safe (refer to section 1.F.  Alignment of the laser and 
accompanying optical equipment is critical to collecting accurate data.  Misalignment is a major 
source of systematic error. The HeNe laser produces a light beam of wavelength 632.8 ± 0.1 nm. 
 

MicroLabTM

Equipment Box

Towel

Figure 2-17.  Bottom Drawer 
(left side) of Lab Station
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    5.  Multimeter 
 
        a) General Digital Multimeter Instructions.  A multimeter is an instrument that can be used 
to measure current (amperes), resistance (ohms), and electric potential (volts).  See Figure 2-19. 
   
        b) Using the Multimeter to Measure Resistance 
 
 i.  A device that measures resistance is called an 
ohmmeter.  The ohmmeter uses a self-contained 
battery to provide a known voltage to the material to be 
measured.  When measuring resistance with a 
multimeter, the element being measured must be 
removed from its circuit and connected directly to the 
meter. 
 
 ii.  Select the resistance mode before 
connecting the multimeter to the elements, or run the 
risk of damaging the multimeter.  Select the resistance 
mode by rotating the dial (labeled in Figure 2-19) 
until it points to the position labeled “Ω.”  Place the 
leads in the resistance () and common () slots. To 
measure an individual resistor’s resistance, R, connect 
the leads to opposite sides of the resistor after 
it has been removed from the circuit.  To 
measure the equivalent resistance, Req, of a 
number of resistors in a circuit, connect the 
leads on opposite sides of the resistors in the 
circuit.  Do not turn on the power to your 
circuit. 
 
        c) Using the Multimeter to Measure Electric 
Potential 
 
 i.  A device that measures potential differences (voltage) is called a voltmeter.  Potential 
difference is always measured between two points in a circuit, since only the difference in 
potential has physical consequence.  A voltmeter should always be placed in parallel with the 
circuit segment across which potential difference is measured. 
 
 ii.  To configure the multimeter to measure electric potential difference (voltage), select 
the voltage mode and scale by rotating the dial ().  To measure voltages greater than 0.3 V, set 
the dial to V.  To measure voltages less than 0.3 V, set the dial to mV.  To measure DC voltage, 
set the dial to one of the positions with the straight bars above the letters ( )   ; to measure AC 
voltage, set the dial to one of the positions with the tilde ( ) ~  over the letters.  Select your mode 
and scale before connecting it to the circuit, or run the risk of damaging the multimeter.  Place 
the leads in the volt () and common () slots. 

4

5

3

2

1

Figure 2-19.  Digital Multimeter (front)
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         d) Using the Multimeter to Measure Current, i 
 
 i.  A device that measures the current in a circuit is called an ammeter.  The current in a 
circuit is a measure of the number of electrons passing through a particular point per second.  
Unlike the voltmeter, the ammeter becomes part of the circuit.  It must have current flowing 
through it to measure the current in that branch of the circuit. 
 
 ii.  To configure the multimeter to measure current, select the ammeter mode and scale by 
rotating the dial ().  To measure current greater than 0.3 mA, set the dial to mA/A.  To measure 
currents less than 0.3 mA, set the dial to µA.  To measure DC current, set the dial to one of the 
positions with the straight bars above the letters ( )   ; to measure AC current, set the dial to one of 
the positions with the tilde ( ) ~  over the letters.  Be sure the power to the circuit is turned off 
before connecting the ammeter.   
 
 iii.  Break the circuit at the point you want to measure current.  Connect one end of the 
break to the common slot of the ammeter () and the other to the amp slot () (if measuring a 
current greater than 320 mA) or milli/microamp slot () (if measuring a current less than 320 
mA).  Before activating the power, be sure there is a resistive element in the same branch of 
the circuit as the ammeter, or you will blow a fuse. 
 
        e) Uncertainties. The measurement of a quantity by a digital meter is suspect for two 
reasons:  inaccuracy of the instrument and random uncertainties.  The accuracy of a digital 
measuring device depends on three factors:  calibration, component quality, and power source 
(battery).  All of the digital meters in the department have been calibrated or have been checked 
against a calibrated meter.  The quality of the devices is dependent on the cost of its components.  
You would expect a $200 voltmeter to be more precise and accurate than a $25 voltmeter.  The 
tolerances of the components of the $200 voltmeter should be smaller than those of the $25 
voltmeter.  Based on these tolerances, the manufacturer guarantees that his device will give an 
accurate reading to a stated uncertainty. 
 
     The random uncertainties stem from our lack of knowledge on the round off criteria of the 
last digit, variations in the point of contact of the probes, and other physical fluctuations.  This 
absolute uncertainty can be estimated by taking multiple measurements and using a standard 
deviation. 
 
     A better estimate uses the manufacturer’s specifications (listed in Tables 2-2 through 2-4 for 
the laboratory multimeters).  To use the table to find the contribution to the absolute uncertainty 
of a measurement due to the quality of the instrument, use the following formula:  In Equation 3-
1, 3-2, and 3-3, the measurement is the actual reading on the multimeter and all of the other 
quantities are taken from Tables 2-2 through 2-4.  The row in the table that you use depends on 
the magnitude of the value shown on the multimeter display.  Choose the row where the display 
value is less than the Range value but more than the Range value in the row directly above it.   
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Remember, the quality of the instrument is only one of the four factors used in determining 
the total absolute uncertainty of your measurement (see Chapter 3, Paragraph A-2). 
 

Uncertainty in a Resistance Measurement 
( ) ( ) ( ) ( )relative uncertainty resolution # of least significant digitsR Rδ    = × + ×    (2-1) 

Function Upper 
Limit 

Relative 
Uncertainty Resolution # of Least 

Significant Digits 

Ω 

320.0 Ω .003 0.1 Ω 2 
3.200 kΩ 0.0025 0.001 kΩ 1 
32.00 kΩ 0.0025 0.01 kΩ 1 
320.0 kΩ 0.0025 0.1 kΩ 1 
3.200 MΩ 0.0025 0.001 MΩ 1 
32.00 MΩ 0.001 0.01 MΩ 1 

Table 2-2.  Specifications for Multimeter used as an Ohmeter 
 

Uncertainty in a Voltage Measurement 
( ) ( ) ( ) ( )relative uncertainty resolution # of least significant digitsV Vδ    = × + ×    (2-2) 

Function Upper 
Limit 

Relative 
Uncertainty Resolution # of Least 

Significant Digits 
DC mV 320.0 mV 0.001 0.1 mV 1 

DC V 

3.200 V 0.001 0.001 V 1 
32.00 V 0.001 0.01 V 1 
320.0 V 0.001 0.1 V 1 
1000 V 0.001 1 V 1 

Table 2-3.  Specifications for Multimeter used as a Voltmeter 
 

Uncertainty in a Current Measurement 
( ) ( ) ( ) ( )relative uncertainty resolution # of least significant digitsi iδ    = × + ×    (2-3) 

Function Upper 
Limit 

Relative 
Uncertainty Resolution # of Least 

Significant Digits 

DC μA 320.0 μA 0.0075 0.1 μA 2 
3200 μA 0.0075 1 μA 2 

DC mA 32.00 mA 0.0075 0.01 mA 2 
320.0 mA 0.0075 0.1 mA 2 

DC A 10.00 A 0.0075 0.01 A 2 

Table 2-4.  Specifications for Multimeter used as an Ammeter 
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EXAMPLE.  You measure the resistance of a resistor and the reading on the multimeter is 287.4 
Ω.  Based on Table 2-2, the resolution of this measurement is 0.1 Ω.  Using Equation (2-1), the 
absolute uncertainty would be at least 
 

(287.4 Ω)(0.003) + (0.1 Ω)(2) = 1.062 Ω. 
 
If no other factors affect the measurement (see Chapter 3, Paragraph A, 2), the resistance 
reported as a confidence interval would be (287 ± 1) Ω. 
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Chapter 3  
 

Data Collection and Reporting 
 
 
A.  Measurement 
 
     The values for many of the physical concepts that we study are based on the results of 
measurements. A large part of laboratory work consists of obtaining and recording mea-
surements. Care in taking and reporting measurements is critical to arriving at valid conclusions. 
 
    1.  Components of a Measurement.  No measurement in an experiment is exact.  There are 
specific elements to include when taking measurements in scientific experiments.  For example, 
in an experiment to determine the acceleration due to gravity near the earth’s surface, one might 
measure a value of g = (9.807 ± 0.001) m/s2.  As in this example, useful measurements must 
provide the following information: 
 
        a)  The numerical value (magnitude) of the measured quantity.  In our example, this value is 
9.807 m/s2. 
 
        b) The Absolute Uncertainty (defined in Section A3 of this chapter) of the measured 
quantity is 0.001 m/s2.  The number of digits used to report a measurement provides information 
about the uncertainty in that measurement. Ensure you follow the rules for significant figures as 
stated in Appendix E (Rules for Significant Figures) throughout your Chemistry and Physics 
courses. 
 
        c)  The units of the measured quantity. 
 
    2.  Factors Affecting Experimental Measurements.1 Every measurement has an 
uncertainty!  This uncertainty is not a mistake or blunder, but an estimate of how confident you 
are in your ability to make the measurement. There is no prescribed method for how to determine 
the absolute uncertainty for a single measured quantity, but it may be a function of one or more 
of the following factors: 
 
        a)  The quality of the measuring instrument.   
 
  i.  Mass can be measured with a triple beam balance or an electronic scale. Each 
instrument may measure mass to a different resolution. The resolution is the smallest graduation 
on a scale or the last decimal place in a digital readout. For example, if a cadet measures a mass 
using the triple beam balance as shown in Fig. 3-1, they might estimate the value of the mass to 
be between 273.35 and 273.40 grams. The resolution of the scale on the triple beam balance is 
0.1 grams, but because of their ability to estimate they could reasonably say that the absolute 

                     
1 Taylor, John, R. An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements. 2nd ed. 
Sausalito, California: University Science Books, 1997, pp. 3-16. 
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uncertainty of the measurement is actually smaller, in the range of 0.05 grams. The absolute 
uncertainty of a measurement may be different than the resolution of the scale. As this example 
illustrates, it might be smaller. Too often we assume that the absolute uncertainty is based solely 
on the resolution of the measuring instrument. If any of the factors listed in paragraphs b-d that 
follow are important, the uncertainty might also be larger than the resolution. (Consider trying to 

use this balance inside a HMMWV that is driving down a 
bumpy road!) 
 
ii.  Instruments used to take measurements may have a 
random variation in their response. An example of this is 
the wandering rest point when using a mass or a spring 
scale that may oscillate slightly. 
 
iii.  There may be uncertainty associated with the 
appropriateness of the measuring instrument in terms of 

the object being measured. For example, there would be greater uncertainty in measuring the 
length of a football field with a meter stick than there would be with a thirty-meter steel tape. 
 
        b)  The nature of the quantity being measured. Sometimes measuring a quantity may be 
difficult because we are unable to determine exactly where or when to start or stop measuring. 
Also the sample may not be uniform or consistent. For example, the length of a rectangular sheet 
may be greater on one side than the other. Some quantities, such as a person’s blood pressure, 
naturally fluctuate on the time scale at which measurements are taken. 

 
        c)  The limitations of humans.  Human limitations (senses, reaction time, etc.) may limit the 
precision of a measurement. For example, if a time interval is measured with a stopwatch, the 
main source of uncertainty is not in the resolution of the stopwatch (many inexpensive stop-
watches have a resolution of 0.01 seconds); rather, the largest contributors to the absolute 
uncertainty in the time measurement are usually the reaction times associated with starting and 
stopping the timer. A much better estimate of the absolute uncertainty for this type of time 
measurement would be 0.1 seconds. 
 
        d)  The conditions under which the measurement is made.  Most of our measurements are 
made in a laboratory and the environment will have little effect on our ability to make a 
measurement. But, if we had to read a scale with very little light, or operate a stopwatch in below 
freezing conditions, we may not be as confident in our measurement. Even in a laboratory, 
variations in temperature, air turbulence, or lighting can affect measurements in random ways. 
Included in this category are uncertainties in a measurement due to parallax. Parallax is the error 
that may occur when reading a scale because the observer’s eye and the pointer are not 
perpendicular. This error can be reduced by ensuring that the eye and the instrument’s pointer are 
in a line perpendicular to the plane of the scale. 
 
    3.  Types of Uncertainty. 
 
        a)  Absolute Uncertainty.  The amount (often stated in the form ±δx) that indicates the range 
in which the desired or true value most likely lies. Example: (x ± δx) m. 
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 Absolute Uncertainty ≡ δx. 

 
        b)  Relative (Fractional) Uncertainty. The ratio of the absolute uncertainty to the measured 
value. This is also known as the fractional uncertainty of the measured value and is often 
expressed as a percentage or fraction. 

 
 Relative Uncertainty ≡ 𝛿𝛿𝛿𝛿|𝛿𝛿| (3-1) 

 
Note: The absolute uncertainty of a measurement has units, but relative uncertainty does not. 
 
        c)  Examples Using Absolute and Relative Uncertainties. 
 
 i.  Determining the relative uncertainty from a confidence interval for a measured value: 
Given the confidence interval for a measurement of speed as v = (66.3 ± 0.5) m/s, calculate the 
relative uncertainty of the speed. In variable form, the confidence interval for the speed would be 
 
     (v ± δv) m/s, 
 
where v is the measured value and δv is the absolute uncertainty of the measured value. In order 
to calculate the relative uncertainty of the speed  
 

 Relative Uncertainty ≡ 𝛿𝛿𝛿𝛿|𝛿𝛿| (3-2) 
 

Substituting the appropriate values into Equation 3-2 results in 
 

Relative Uncertainty = 0.5 m/s
66.3 m/s

, 

 
Relative Uncertainty = 0.0075 or 0.75%. 

 
 ii.  Determining the absolute uncertainty from the relative uncertainty of a measured value. 
Given that the relative uncertainty of a measurement of resistance (R = 243 Ω) is 5.0%, calculate 
the absolute uncertainty and report the resistance as a confidence interval.  Begin with the 
equation for relative uncertainty and solve for the absolute uncertainty (δR) as shown; 

Relative Uncertainty = R
R
δ  

δR = R *(Relative Uncertainty) 
 

δR = (243 Ω)(0.050) = 12.15 Ω 
 
Using the rounding rules outlined below, we report this as a confidence interval 
 

R = (240 ± 10) Ω. 
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    4.  Reporting the Measurement. 
 
        a)  Confidence Intervals. When we report the measured value, x, and the absolute 
uncertainty, δx, together, we call this a confidence interval. 
 
        b)  Rounding Rule for Stating Uncertainties2. Since the absolute uncertainty is only an 
estimate, in most cases it is sufficient to round to one significant figure. This practice is based on 
the idea that if, for example, a quantity is uncertain to within one-tenth, then reporting 
uncertainty to the hundredths or thousandths place is meaningless.  For relative uncertainty the 
number of significant figures depends on the precision of the measurement.  In the core science 
courses the use of two significant figures will be used allowing for a comparison and analysis of 
data. 
 
        c)  Rounding Rule for Writing Confidence Intervals3. The last significant figure in any 
stated answer will be of the same order of magnitude (in the same decimal position) as the last 
digit of the absolute uncertainty. For example, we would not report a number such as 2.1789345 
meters if we were really only sure of the reading to within 0.01 meters (1 centimeter). Instead, 
we would report the value as 2.18 ± 0.01 meters, i.e., we estimate that the value lies somewhere 
between 2.17 and 2.19 meters. 
 
        d)  Directly Measured Quantity table.  Using a table is a good method of organizing your 
measurements and presenting them in a clear and concise manner.  Use Table 3-1 below to report 
the details of your measurements.  

Measured 
Quantity Confidence Interval Relative 

Uncertainty Measurement Device 

[Description of 
measured 
quantity, and the 
variable that 
represents the 
quantity] 
Diameter of the 
plastic ball, dball  

[Confidence interval  
of measurement] 

(0.35 ± 0.01) m 

[Relative 
Uncertainty] 

2.9 % 

[Accurate description of 
measurement device] 

Meter stick 
Measurement Procedure: [describe how the measurement was taken 
(i.e. where/when you stopped/started your measurement, what settings 
were used)]   
The ball was placed between two vertically oriented straight edges and 
marks were made at the base of the straight edges on a piece of paper.  The 
distance between the two marks was measured with a meter stick.   
Justification of Uncertainty: [State the factor(s) of uncertainty that 
determined your estimate of the absolute uncertainty, the specific cause 
of the uncertainty and the absolute uncertainty associated with the 
specific cause] 
The meter stick had tick marks every 1 cm, but could be estimated to a 
precision of ± 0.5 cm.  The ball was not exactly spherical and measurements 
at different orientations resulted in differences of  ± 1 cm.  

Table 3-1.  Measured Quantity Table Format  

                     
2 Ibid., p. 15. 
3 Ibid., p. 15. 



 

3-5 
 

 
        e)  Reporting Data in a Table.  Often a table is required to report data when multiple trials 
are used.  Use the following guidelines for presenting data in tables: 
 
 i.  Each data column is labeled with the quantity, variable, and units. 
 
 ii.  The absolute uncertainty of each directly measured quantity must be included. 
 
  (a)  If the uncertainty is the same for each trial, then it can be recorded in the 
column heading (See Table 3-8 for an example). 
 
  (b)  If the uncertainty is not the same for each trial, then the absolute uncertainty 
must be recorded in a separate column (See Table 3-9 for an example). 
 
 iii.  The data is centered under the column heading and is displayed rounded to the 
decimal place of the corresponding absolute uncertainty. 
 
B.  Propagation of Uncertainty 
 
     The numerical values you obtain in measurements are frequently used to determine a final 
result for some quantity that is a function of those measured values, but cannot be measured 
directly itself.  The uncertainty in your final numerical answer depends upon the uncertainties in 
the directly measured quantities.  Error analysis is the assessment of the uncertainty in our 
measurements and how it affects the final results. To properly interpret the data you have 
collected, you must examine your results for probable experimental error. Conclusions based on 
a calculated value may be accepted or rejected on the basis of the error that is inherent in the 
findings. There are many techniques for propagating the uncertainty of calculated quantities; 
however, we will focus on error propagation by quadrature.  In Introductory Physics, two 
methods will be utilized for evaluating the error of objective quantities.  When you make a 
measurement, there is always some error present. 
 

1. Introductory Method 
 

     The introductory method for error propagation is a simplified process that is derived utilizing 
partial derivatives and can be derived utilizing the method discussed in Appendix F.  For the 
introductory method we have three general equations used for specific calculations.  The first 
equation is when the propagation of uncertainty is calculated using an equation that is with sums 
and differences and the second general equation is used when your calculated value was 
determined from a function that was either a products and/or quotients relationship.  The final 
equation is used when the function has variables raised to a power. 
 

a) Uncertainty in Sums and Differences 
 
     Suppose that our function of interest is solely made up of sums and differences of other 
measured quantities that are independent and random from one another.  The absolute 
uncertainties can be summed in quadrature to determine the function’s absolute uncertainty. 
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𝑓𝑓(𝑎𝑎, 𝑏𝑏, … , 𝑐𝑐) = 𝑎𝑎 − 𝑏𝑏+. . . +𝑐𝑐  
 

𝛿𝛿𝑓𝑓 = �(𝛿𝛿𝑎𝑎)2 + (𝛿𝛿𝑏𝑏)2 +. . . +(𝛿𝛿𝑐𝑐)2 (3-3) 
 

     The derivation can be found in Appendix F. 
 
     For example, an infantry battalion’s scout platoon leader’s mission is to provide early 
warning on enemy movement in AO EINSTEIN.  On day 2 of the operation the scout platoon 
leader identifies three enemy Antonov An-24 aircraft flying overhead and dropping enemy 
paratroopers into AO EINSTEIN.  He observes and makes Table 3-2.  In order to give an 
accurate SALUTE report to higher he wants to calculate the overall uncertainty in his calculation 
of enemy paratroopers. 

𝑃𝑃1 (43±4) m 
𝑃𝑃2 (44±6) m 
𝑃𝑃3 (48±2) m 

Table 3-2.  Enemy Paratrooper Count from Antonov AN-24 
 

     The total number of enemy paratroopers, 𝑃𝑃, is the sum of the three An-24 enemy paratrooper 
drops, (𝑃𝑃1 + 𝑃𝑃2 + 𝑃𝑃3), which equals 176 enemy paratroopers. 
 
     The absolute uncertainty in the total number of enemy paratroopers, 𝛿𝛿𝑃𝑃, is found using 
Equation 3-3. 
 

𝛿𝛿𝑃𝑃 = �(𝛿𝛿𝑃𝑃1)2 + (𝛿𝛿𝑃𝑃2)2 + (𝛿𝛿𝑃𝑃3)2  
 

𝛿𝛿𝑃𝑃 = �(4)2 + (6)2 + (2)2  
 

𝛿𝛿𝑃𝑃 = 7.483 enemy paratroopers 
 

     We will round our absolute uncertainty to one significant figure and write our confidence 
interval as 𝑃𝑃 = (135 ± 7) enemy paratroopers. 
 

b)  Uncertainty in Products and Quotients. 
 

     Suppose that our function of interest is solely made up of products and/or quotients of other 
measured quantities that are independent and random from one another.  The relative 
uncertainties can be summed in quadrature to determine the functions uncertainty. 
 

𝑓𝑓(𝑎𝑎, 𝑏𝑏, … , 𝑐𝑐) = 𝑎𝑎𝑎𝑎
𝑐𝑐

  

      𝛿𝛿𝛿𝛿|𝛿𝛿| = ��𝛿𝛿𝑎𝑎|𝑎𝑎|�
2

+ �𝛿𝛿𝑎𝑎|𝑎𝑎|�
2

+ ⋯+ �𝛿𝛿𝑐𝑐|𝑐𝑐|�
2

 (3-4) 
 

     The derivation for this can be found in Appendix F. 
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     For example, an infantry battalion’s scout platoon leader’s mission is to provide early 
warning on enemy movement in AO EINSTEIN.  On day 2 of the operation the scout platoon 
leader identifies Antonov An-24 aircraft flying overhead and dropping enemy paratroopers into 
his AO.  He observes and makes Table 3-3.  In order to give an accurate SALUTE report to 
higher he wants to calculate the overall uncertainty in his calculation of enemy paratroopers. 
 

n (# of Antonov An-24s) P (# of enemy paratroopers jumped from one An-24) 
(22±1) aircraft (45±6) enemy paratroopers 
Table 3-3.  Measurement of Antonov An-24s and enemy paratroopers 

 
     The total number of enemy paratroopers is found using the function, 𝑃𝑃𝑇𝑇𝑇𝑇𝑇𝑇𝑎𝑎𝑇𝑇 = 𝑛𝑛𝑃𝑃, and is 
equal to 990 enemy paratroopers.  The relative uncertainty of the total number of enemy 
paratroopers is found using equation 3-4. 

𝛿𝛿𝑃𝑃𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
|𝑃𝑃𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇|

= ��𝛿𝛿𝛿𝛿|𝛿𝛿|�
2

+ �𝛿𝛿𝑃𝑃|𝑃𝑃|�
2
  

 
     Using algebra we can solve for the absolute uncertainty of the total number of enemy 
paratroopers. 

𝛿𝛿𝑃𝑃𝑇𝑇𝑇𝑇𝑇𝑇𝑎𝑎𝑇𝑇 = |𝑃𝑃𝑇𝑇𝑇𝑇𝑇𝑇𝑎𝑎𝑇𝑇|��
𝛿𝛿𝛿𝛿
|𝛿𝛿|�

2
+ �𝛿𝛿𝑃𝑃|𝑃𝑃|�

2
  

 

𝛿𝛿𝑃𝑃𝑇𝑇𝑇𝑇𝑇𝑇𝑎𝑎𝑇𝑇 = |990|�� 1
|22|�

2
+ � 6

|45|�
2
  

 
𝛿𝛿𝑃𝑃𝑇𝑇𝑇𝑇𝑇𝑇𝑎𝑎𝑇𝑇 = 139 enemy paratroopers 

 
     Using appropriate rounding rules this becomes 100 enemy paratroopers and is expressed as a 
confidence interval, 𝑃𝑃𝑇𝑇𝑇𝑇𝑇𝑇𝑎𝑎𝑇𝑇 = (1.0 ± 0.1) 𝑥𝑥 103enemy paratroopers. 
 

c) Uncertainty in a Power 
 

     Suppose that our function of interest involves a variable that is raised to a power.  The relative 
uncertainty can be found using the general equation below. 

𝑓𝑓(𝑥𝑥) = 𝑥𝑥𝛿𝛿 
 

𝛿𝛿𝛿𝛿
|𝛿𝛿| = |𝑛𝑛| 𝛿𝛿𝛿𝛿

|𝛿𝛿|  (3-5) 
 

d) Combining Uncertainty in a Complex Function 
 

     Suppose that we have a function that has powers, products and quotients, and sums and 
differences.  We must break down the uncertainties and combine them appropriately to see what 
the overall uncertainty is in our function.  Here is an example. 
 

𝑓𝑓(𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑) = 𝑎𝑎2𝑎𝑎−𝑐𝑐
𝑑𝑑3
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     In order to calculate the absolute uncertainty of our function, 𝛿𝛿𝑓𝑓, we need to break down and 
look first just at the numerator and start combining uncertainties based off the math operation 
being used.  Let us make the following expression 
 

𝑔𝑔(𝑎𝑎, 𝑏𝑏) = 𝑎𝑎2𝑏𝑏 
 

     We can find the absolute uncertainty of 𝑔𝑔(𝑎𝑎, 𝑏𝑏) combine Equations 3-4 and 3-5. 
 

𝛿𝛿𝑔𝑔 = |𝑔𝑔|��2 𝛿𝛿𝑎𝑎
|𝑎𝑎|�

2
+ �𝛿𝛿𝑎𝑎|𝑎𝑎|�

2
  

 
     We can rewrite our original function in terms of 𝑔𝑔, 𝑐𝑐, and 𝑑𝑑. 
 

𝑓𝑓(𝑔𝑔, 𝑐𝑐,𝑑𝑑) = 𝑔𝑔−𝑐𝑐
𝑑𝑑3

  
 

     Now we can make a new function to express the numerator. 
 

ℎ(𝑔𝑔, 𝑐𝑐) = 𝑔𝑔 − 𝑐𝑐  
 

     We can find the absolute uncertainty in ℎ(𝑔𝑔, 𝑐𝑐) by using the sums and differences rule from 
Equation 3-3. 

 
𝛿𝛿ℎ = �(𝛿𝛿𝑔𝑔)2 + (𝛿𝛿𝑐𝑐)2  

 
     Finally, instead of writing our function in terms of 𝑎𝑎, 𝑏𝑏, 𝑐𝑐, and 𝑑𝑑, we will write it in terms of ℎ 
and 𝑑𝑑. 

 
𝑓𝑓(ℎ,𝑑𝑑) = ℎ

𝑑𝑑3
  

 
     We again can use the combination of Equation 3-4 and 3-5 to determine the absolute 
uncertainty in our function. 

 

𝛿𝛿𝑓𝑓 = |𝑓𝑓|��𝛿𝛿ℎ|ℎ|�
2

+ �3 𝛿𝛿𝑑𝑑
|𝑑𝑑|�

2
  

 
As seen, this process can become long and cumbersome.  There are more advance techniques 
that can be used to propagate error on calculations that reduce the complexity utilizing calculus 
and partial derivatives.  This will be discussed in the following section. 
 

2. Intermediate Method of Error Propagation 
 
The introductory method discussed in the previous section was derived utilizing error 

propagation method discussed here and Appendix F.  The error propagation begins by being 
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evaluated in quadrature.  For example to measure the density of a cube of wood, measuring its 
mass, m, and the length of one side of the cube, x, with calculations will determine the density. 

 
𝜌𝜌(𝑚𝑚, 𝑥𝑥) = 𝑚𝑚

𝛿𝛿3
     

 
The uncertainty in your final numerical answer depends upon the uncertainties in the 

directly measured quantities.  Error analysis is the assessment of how uncertainty our 
measurements and how it affects the final results. To properly interpret the data you have 
collected, you must examine your results for probable experimental error. Conclusions based on 
a calculated value may be accepted or rejected on the basis of the error that is inherent in the 
findings. There are many techniques for propagating the uncertainty of calculated quantities; 
however, in Physics we focus on error propagation by quadrature.   

 
If the uncertainties in your measurements are independent and random in nature, a more realistic 
estimate of the absolute uncertainty is given by the following quadrature equation: 
 

𝛿𝛿𝑓𝑓(𝑥𝑥, 𝑦𝑦, … ) = ��𝜕𝜕𝛿𝛿
𝜕𝜕𝛿𝛿
𝛿𝛿𝑥𝑥�

2
+ �𝜕𝜕𝛿𝛿

𝜕𝜕𝜕𝜕
𝛿𝛿𝑦𝑦�

2
+ ⋯ (3-6) 

 
Equation 3-6 looks complicated, but it is understandable if function 𝒇𝒇 is broken down 

into each term.  Each term of equation 3-6 consists of a partial derivative, 𝝏𝝏𝒇𝒇
𝝏𝝏𝝏𝝏

, and a measurement 
absolute uncertainty, 𝜹𝜹𝝏𝝏.  A partial derivative is the derivative of function, 𝒇𝒇, with respect to one 
variable, 𝝏𝝏, and treating the others as fixed.  Equation 3-6 may be generalized to as many 
variables as desired, since each term is added in quadrature. 
 
Applying Equation 3-6 to our density example yields the following: 
 

𝛿𝛿𝜌𝜌(𝑚𝑚, 𝑥𝑥) = ��𝜕𝜕𝜕𝜕
𝜕𝜕𝑚𝑚

𝛿𝛿𝑚𝑚�
2

+ �𝜕𝜕𝜕𝜕
𝜕𝜕𝛿𝛿
𝛿𝛿𝑥𝑥�

2
  

 
Once the partial derivatives are taken the algebraic solution for propagating the error of the 
density equation, 𝜌𝜌(𝑚𝑚, 𝑥𝑥), is determined to be  

 

𝛿𝛿𝜌𝜌(𝑚𝑚, 𝑥𝑥) = �� 1
𝛿𝛿3
𝛿𝛿𝑚𝑚�

2
+ �−3𝑚𝑚

𝛿𝛿4
𝛿𝛿𝑥𝑥�

2
  

 
For more examples of how to use the error propagation method with partial derivatives, see 
Appendix G. 

 
C.  Types of Experimental Error 
 
    When you make a measurement, there is always some error present. We can take steps to 
reduce errors due to sloppiness, poor preparation, and misinterpretation of data, but there are 
some errors we will not be able to avoid. Therefore, we must include an analysis of any error 
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when considering the results and conclusions from our data. Errors can be divided into two 
categories: random and systematic. 
 

1. Random Error and Precision 
 
       a)  Random errors are inherent in every measurement.  Random errors affect the precision of 
a measurement.  The precision of a measurement is the degree to which repeated measurements 
under unchanged conditions show the same results. Random errors are positive or negative 
fluctuations that cause similar measurements to be too high sometimes and too low at other 
times. When a single measurement of a quantity, x, is made the effect of these random errors 
should be estimated and reported as the absolute uncertainty, 𝛿𝛿𝑥𝑥, in the measurement. This 
quantity is based on how precisely you think that you made the measurement. If many 
measurements are made, the effect of random errors decreases and normally averages out to 
nearly zero. 
 
       b)  Relative uncertainty is a measure of the precision of the measurement. If a measurement 
has a high degree of precision, repeated measurements (using the same equipment and technique) 
should produce about the same results. 
 
        c)  Random errors are due to uncertainties related to the experiment itself and are not 
mistakes. Some examples of sources of random errors will be addressed in later labs. Gross 
reading errors and miscalculations (otherwise known as “human” errors or mistakes [see 3. 
Below]) are not considered experimental (random or systematic) errors! 
 

2. Systematic Error and Accuracy 
 
a) Systematic errors can cause measured values to be consistently either too high or too 

low. Systematic errors affect the accuracy of a measurement. The accuracy of a measurement 
indicates how close the measurement is to a true or commonly accepted value. We cannot reduce 
the effect of systematic errors by taking more measurements in the same manner.  Examples of 
systematic error sources that can cause inaccuracies are instrument error, method of theory error, 
procedure error, and etc. 

 
i. Instrument Error. The use of equipment that is incorrectly calibrated can lead 

to systematic errors.  For example, not zeroing a balance before making a mass measurement. 
 

ii. Method of Theory Errors. Method of theory errors are those that result from 
the procedure used or the failure to take into account all factors bearing on the measurement. For 
example, assuming that air drag is negligible when measuring the acceleration due to gravity by 
timing the fall of an object released from rest from the top of a tall building would cause 
systematic error in the result. 
 

3. Mistakes.  Mistakes include, but are not limited to, misreading a scale, copying data 
incorrectly or splashing and spillage of reagents during a reaction. These mistakes will largely 
affect the accuracy of your results. You can eliminate mistakes through careful laboratory 
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technique. In the event that a mistake occurs, that measurement should be discarded and a new 
measurement made. Mistakes are neither random nor systematic! 
 
   4.  Determining the Relative Significance of Random and Systematic Errors 
 
       a)  Number Line Analysis. Displaying an experimentally determined value as a confidence 
interval on a number line along with an accepted or reference value allows us to make a visual 
assessment of the relative importance of random and systematic errors in the experiment. 
 

 
Figure 3-2. Number Line Formatting Example 

 
 i.  Formatting Standards for Number lines. The following standards will be used when 
preparing number lines (see Figure 3-2): 
 
 (a)  Scale is appropriately spaced and intervals are uniform; do not waste space 
unnecessarily. 
 
 (b)  Number-line labeled with the title of the quantity and units. 
 
 (c)  Lines representing the confidence interval for the values under comparison. 
 
 (d)  Lines are labeled correctly (i.e. experimental, accepted, manufacturer, reference). 
 
 (e)  The lines are marked at the midpoint (dot) and endpoints (vertical line). 
 
 (f)  The midpoint and endpoints values are present and displayed with the correct 
significant figures. 
 

ii.  Determining the Dominant Form of Error. Through analysis of the number line, one 
can determine which type of error, random or systematic, is the dominant form or error in an 
experiment. Once the dominant form of error has been identified, then the process of determining 
meaningful improvements to the experiment can begin.  By utilizing the flowchart in Fig. 3-3, 
the dominant form of error of any number line can be determined. 
 

“Accepted” Value

Experimental Value
2.8 3.1 3.4

Length
(cm)

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

1.8 2.3 2.8
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Figure 3-3. Number line analysis flowchart. 

 
     *If the experimental confidence interval is more precise than the accepted value, it may be the 
new accepted value.  This is highly unlikely for any laboratory conducted in USMA 
undergraduate courses.   
 
     The following two examples are analyzed with the flowchart from Fig. 3-3. 
 

 

 
Figure 3-4. Systematic Error Example 

 
     Looking at the experimental value and accepted value we ask if the confidence intervals 
overlap.  Since they do not, the dominant form of error is systematic error. 
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Figure 3-4. Random Error Example 

 
     Now consider Figure 3-4.  Using the Fig. 3-3 flowchart, we determine whether or not the 
confidence intervals overlap.  Since they do overlap we follow up with asking if the experimental 
relative uncertainty is smaller than relative uncertainty of the accepted value.  After calculating 
the relative uncertainties, the experimental relative uncertainty, 0.0098, is smaller than the 
accepted value’s relative uncertainty, 0.25, therefore the dominant form of error is random and 
the experimental value may be considered as the new accepted value. 
 
     Note: When the accepted value is an exact number (as is the case for the permeability of free 
space, μ0), plot the accepted value as a point without a confidence interval. If the exact value lies 
inside the confidence interval, an experimenter should conclude that random error was dominant 
in the experiment. If the exact value lies outside the confidence interval, then an experimenter 
should conclude that the experiment was inaccurate and systematic error was dominant. 
 
 iii.  Error Source Analysis. Once you have identified the form of error, systematic or 
random, it is important to analyze the sources that may have contributed to your dominant form 
of error.  In order to analyze error or identify the main sources of error in an experiment, a 
thorough review of conditions, procedures, theory, and relative uncertainties must be 
completed.  Ascertaining the sources contributing to the error in an experiment can be either an 
exhaustive process of elimination or an abbreviated process using judgement and intuition. 
 
 (a)  Identifying sources of error in an experiment where random error dominates, we 
can start by conducting a relative uncertainty analysis.  With random error, the relative 
uncertainty in our objective quantity is most likely greater than that of the accepted quantity’s 
relative uncertainty (Reference Figure 3-3).  In order to reduce the objective quantity’s relative 
uncertainty we must look at the independent quantity, dependent quantity, and control variables’ 
relative uncertainties to identify those that are the greatest and contributing the most to the 
objective quantity’s relative uncertainty.  Once the greatest contributors are identified, you must 
seek ways to reduce the measurements absolute uncertainty and as a result reduce the objective 
quantity’s relative uncertainty.  This process will reduce the objective’s relative uncertainty and 
make your experimental value more precise. 
 
      An example of this can be seen when conducting an experiment to determine the drag 
coefficient of an object.  In Table 3-4 are listed the measurements of one such experiment.  In 
Figure 3-5 is a number line showing the accepted value and experimental value.  Since the 
relative uncertainty of the accepted value (0.17) is smaller than the relative uncertainty of the 
experimental value (0.31), we must determine sources of error contributing to this high relative 
uncertainty.  Looking at Table 3-4, the diameter of the object and the slope (the slope comes 
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from conducting a linear regression analysis of the data – see Appendix H) have a high relative 
uncertainty compared to the relative uncertainties of the acceleration due to gravity and the 
density of air.  We must try and determine how to reduce the relative uncertainty in the diameter 
and in our slope, which will make our calculated drag coefficient more precise.  Possible 
solutions may be changing the instrument used to measure the diameter or possibly changing the 
measured value and the method used to collect data. 
 

Variable Measured Value Absolute Uncertainty Relative Uncertainty 

Diameter of object, d  0.21 m .03 m 0.14 

Slope  360 m2kg s2 30m2kg s2 0.083 

Density of Air,  1.20 kg/m3 0.02 kg/m3 0.017 

Acceleration due to gravity, g 9.807 m/s2 0.001 m/s2 0.00010 
 

Table 3-4. Drag Coefficient Data Table Example. 
 

 
 

Figure 3-5. Drag Coefficient - Number Line Example 
 
 (b)  In order to identify sources of error in an experiment where systematic error 
dominates, a more exhaustive approach must be taken due to the numerous sources of 
systematic error.  Table 3-5 is a checklist for assisting with systematic error identification.  Pay 
special attention to understanding how each variable, or “letter,” in the model equation could 
skew an experimental value, because this step directs a detailed analysis of the measurements, 
procedures, and conditions. 
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Theory 
1. Ensure model equation and theory are correct 
2. Determine how each variable/input in the model equation could contribute to the 

systematic error (only after model equation review, and MOST important step)* 
*Review the variables and inputs for a linear regression (x-axis and y-axis) 

Execution 
1. Assess procedure execution 
2. Review measurement procedures 
3. Check conversions 

Procedures 
1. Review appropriateness of procedures 
2. Assess procedures against assumptions 

Conditions 
1. Evaluate lab environment’s impact on experiment 
2. Check conditions of accepted and experimental values 
3. Assess limitations of lab equipment and their impact 

Table 3-5. Systematic Error Source Checklist 
 

If a lab group has collected the data in Figure 3-6 through the model equation 3-7, then 
they would be close to the accepted value of their object’s drag coefficient, but systematic error 
would still be dominating their experiment. 

 
Figure 3-6. Drag Coefficient –Systematic Error Analysis Example 

 
 

C = 8g
(slope)ρπd2

 (3-7) 
 
By applying the checklist in Table 3-5, the group should develop findings similar to Table 3-6 in 
order to explain the systematic error with a consistently incorrect variable.  
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 g slope ρ, density of air d, diameter 

How 

• Greater 
than actual 

• Less than 
actual 

• y-axis: terminal 
velocity 
squared (too 
little) 

• x-axis: mass 
(too much) 

• Less than actual • Less than actual 

Execution 

• Given, N/A • Improperly 
dropping object 

• mass scale not 
zeroed 

• Not dropping 
object high 
enough to 
reach terminal 
velocity 

• Sensor is 
measuring in 
ft/s but wrote 
down m/s 

• Given, N/A • Measured radius 
instead of 
diameter 

• Incorrectly 
measured the 
object’s 
diameter 

• Dropped the 
wrong face of 
the object for 
exposed 
diameter 

Procedures 

• Given, N/A • Inadequate 
motion sensor 
chosen for 
experiment 

• Low sampling 
rate of sensor 
limited velocity 
readings 

• Dropping at a 
height of 4 
inches 
prevented 
object from 
reaching 
terminal 
velocity 

• Given, N/A • Instructions said 
to measure the 
wrong diameter 

• Instructions said 
to use a tape 
measure when 
calipers were 
needed  

• Need multiple 
copies of the 
object to prevent 
error from 
deformation  

Conditions 

• Value of g 
in lab is 
greater 
than 
average g 
(highly 
unlikely) 

• A/C system 
reduced 
object’s 
terminal 
velocity (highly 
unlikely) 

• Given air density 
was at standard 
pressure at sea 
level 

• Laboratory is hot, 
humid, and several 
hundred feet above 
sea level, thus 
reducing density 

• Object warmed 
during 
experiment and 
expanded the 
diameter 
(unlikely) 

• Object 
significantly 
deformed after 
falling 

Table 3-6. Systematic Error Analysis Example 
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Note: The following table contains examples of common sources of systematic error.  
 
Common Sources of Systematic Error Examples of Common Source of 

Systematic Error 
Incorrect Theory Wrong assumptions 

Incorrect model equation 
Failure to follow Procedures Throwing an object, instead of releasing 

(incorrect execution) 
Incorrect measurement 
Measured in grams, but reported kilograms 
(failure to convert) 

Flawed Procedures Measured at inappropriate locations/angles 
Procedures and assumptions do not match 

Imperfect conditions Environment adversely affected experiment 
Lab environment does not match reference 
Limitations of lab equipment 

Table 3-7. Common Sources of Systematic Error 
 
       b) Percent Difference. To determine the agreement of an experimentally determined value 
with the accepted or theoretical value, we can also calculate percent difference. Percent 
difference shows us the accuracy of our results and is a measure of the systematic error in the 
same way that relative uncertainty is a measure of our random error.  Using Equation 3-8 we can 
calculate the percent difference and round to two significant figures.  
 

% 𝑑𝑑𝑑𝑑𝑓𝑓𝑓𝑓𝑑𝑑𝑑𝑑𝑑𝑑𝑛𝑛𝑐𝑐𝑑𝑑 = |𝑒𝑒𝛿𝛿𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑚𝑚𝑒𝑒𝛿𝛿𝑇𝑇𝑎𝑎𝑇𝑇 𝛿𝛿𝑎𝑎𝑇𝑇𝑣𝑣𝑒𝑒−𝑎𝑎𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒𝑇𝑇𝑒𝑒𝑑𝑑 𝛿𝛿𝑎𝑎𝑇𝑇𝑣𝑣𝑒𝑒| 𝛿𝛿 100
|𝑎𝑎𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒𝑇𝑇𝑒𝑒𝑑𝑑 𝛿𝛿𝑎𝑎𝑇𝑇𝑣𝑣𝑒𝑒|  (3-8) 

 
For example, if you conducted an experiment to measure the acceleration due to gravity, g, and 
obtained an experimental value of (10.0 ± 0.5) m/s2, the percent difference from the accepted 
value of (9.807 ± 0.001) m/s2 would be 
 

% 𝑑𝑑𝑑𝑑𝑓𝑓𝑓𝑓𝑑𝑑𝑑𝑑𝑑𝑑𝑛𝑛𝑐𝑐𝑑𝑑 = |10.0−9.807| 𝛿𝛿 100
|9.807|   

 
% 𝑑𝑑𝑑𝑑𝑓𝑓𝑓𝑓𝑑𝑑𝑑𝑑𝑑𝑑𝑛𝑛𝑐𝑐𝑑𝑑 = 2.0% 

 
D.  Reduction of Errors 
 
     1.  General.  Although errors can never be eliminated entirely, care, patience, and awareness 
can reduce them. Mistakes caused by gross misreading of instruments are unjustifiable, and you 
may be asked to repeat the experiment(s). Detection of faulty equipment and its replacement can 
avoid some error. Analysis of the error in the final result of an experiment should suggest 
methods that can improve the accuracy and precision of the experiment. The experimentalist 
should determine the dominant source of error and first seek to minimize or eliminate it. 
Repeating the experiment can produce better results if the dominant form of error is addressed. It 
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is this iterative process that results in the high degree of precision and accuracy to which many 
physical constants have been measured. 
 
     2.  Example of Analysis and Reduction of Error. 
 
     An experiment to determine the spring constant of a spring was done by attaching a hanging 
mass and allowing the mass to oscillate. The model equation used to describe the physical 

situation was 2

24
T

mk π
= , where m is the mass of the hanging mass (not the spring) and T is the 

period of oscillation. The mass and the period were measured in the lab, and the result plotted on 
a number line as shown in Figure 3-7. 
 

 

 
 
     An analysis of Figure 3-7 shows that the experimental value is not precise compared to the 
accepted value since the confidence interval of the experimental value is larger than that of the 
accepted value.  The experimental value is also not accurate since there is no overlap of the 
confidence intervals.  Utilizing the flowchart in Figure 3-3, the dominate form of error is 
systematic since the experimental value does not overlap therefore it is not accurate.  The 
analysis of this systematic error begins with analyzing the assumptions from the model and the 

model equation
2

2

4π
=

mk
T

.  Since our experimental value is smaller than the accepted value we 

consider the model equation and what measured values may be reducing our experimental value.  
We observe that the mass, m, could be too small or that our measurement of the period, T, was 
too large.  Both of these make the overall spring constant, k, smaller.  A possible source of 
systematic error in this experiment could be the fact that the mass of the spring was ignored in 
the model; this could account for this discrepancy. The effect of this possible systematic error 
should be analyzed to determine if it is consistent with the results. Since the spring constant, k, is 
directly proportional to the mass, a value of m that is too small (ignoring the mass of the spring) 
would yield a calculated value of k that is too small. Since the experimental value is smaller than 
the accepted value, this systematic error is consistent with the results. Improvements to reduce or 
eliminate this systematic error should be explored. The model equation can be modified to 
include the mass of the spring, or the effect of the mass of the spring can be minimized with a 
larger hanging mass. The experiment was repeated with larger hanging masses to further 
evaluate the effect of neglecting the mass of the spring. The improved results with the larger 
hanging mass are shown in Figure 3-8. 
 

“Accepted” ValueExperimental Value

2.6 2.7 2.8 2.91 2.95 2.99

Spring 
Constant

(N/m)
2.6 2.7 2.8 2.9 3.0 3.1

Figure 3-7.  Spring Constant Example 1
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     An analysis of Figure 3-8 for the improved experiment shows that while the experimental 
value is now accurate due to overlap of the confidence intervals, it is still not precise compared 
to the accepted value. The dominant form of error is now random error. The relative 
uncertainties of each measured quantity should be compared to determine which is the least 
precise, contributing the most random error to the experiment. After comparing the relative 
uncertainties of the hanging mass and the square of the period, it was determined that the square 
of the period was the least precise. In order to improve the experiment further, 15 trials using the 
same procedure were conducted in order to reduce the effect of random errors in the 
measurement of the period. The results of the experiment after the second improvement are 
shown in Figure 3-9. 
 

 
 
     An analysis of the number line after the second improvement shows that the experiment is 
both accurate and precise compared to the reference value. Because the experimental value has 
exceeded the precision of and is consistent with the reference value, it is not obvious if our 
efforts to further improve this experiment should be directed at reducing random or systematic 
errors. 
 
E.  Statistical Evaluation of Results 
 
     One method of acquiring a confidence interval from a set of experimental data is to use the 
mean and the standard deviation. We can use this method when we make several similar 
measurements and are confident that the greatest impact on the uncertainty of our measurements 
is due to random errors. 
 
     1.  Mean.  In many experiments, we make repeated measurements of the same quantity, say x, 
and obtain a set of measurements, {x1, x2, …, xN}, where N is the total number of measurements 

Experimental Value
2.8 2.9 3.0

2.91 2.95 2.99
“Accepted” Value

Spring 
Constant

(N/m)
2.6 2.7 2.8 2.9 3.0 3.1

Figure 3-8.  Spring Constant Example 2

2.90 2.92 2.94

Spring 
Constant

(N/m)
2.6 2.7 2.8 2.9 3.0 3.1

2.91 2.95 2.99

Experimental Value

“Accepted” Value

Figure 3-9.  Spring Constant Example 3
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made.  Our best estimate for the value of the quantity x will be the average or mean4, x , which is 
defined as 
 

 1 2 3 ... Nx x x xx
N

+ + + +
=  (3-9) 

 
This can be written more compactly as 

 
N

x
x

N

i
i∑

== 1  (3-10) 

 
     2.  Standard Deviation. The standard deviation5 of the measurements, N,x,x 1 , is an estimate 
of the average uncertainty of the measurements. The deviation is the difference between an 
individual measurement xi and the mean, x . In order to make a single estimate of the uncertainty 
for our set of measurements, N,x,x 1 , we need to calculate the mean square deviation of all the 
measurements from the mean. Since some deviations may be positive and some may be negative 
we square all of the deviations and then take the square root of the average. Thus the standard 
deviation, xσ , of the set N,x,x 1 , is  

 ∑
=

−=
N

i
ix xx

N 1

2)(1σ  (3-11) 

 
     Equation 3-11 is commonly referred to as the standard deviation of an entire population. If the 
number of measurements we make is relatively small, this definition of the standard deviation 
may slightly underestimate the uncertainty. Therefore, we will use the sample standard 
deviation6 which is defined as 
 

 ∑
=

−
−

=
N

i
ix xx

N 1

2)(
1

1σ  (3-12) 

 
     The function STDEV or STDEV.S in Microsoft Office Excel will calculate the sample 
standard deviation for a set of numbers. 
 
     3.  Standard Deviation of the Mean7.  A more precise method of acquiring a confidence 
interval for an experimental result is to use the mean and the standard deviation of the mean 
(SDOM or 𝝈𝝈𝝏𝝏�). The SDOM is defined as 
 
 𝜎𝜎�̅�𝛿 = 𝜎𝜎𝑥𝑥

√𝑁𝑁
  (3-13) 

                     
4 Ibid., pp. 97-98. 
5 Ibid., pp. 98-99. 
6 Ibid., p. 100. 
7 Ibid., p. 149. 
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where σx is the sample standard deviation, as given in Eq. 3-12, of a set of values, 1, , Nx x , and N 
is the total number of values. The standard deviation is the average uncertainty in each of the 
values whereas the SDOM is the average uncertainty in all the values considered as a group. This 
method can be used when several similar measurements are made and the experimenter is confi-
dent that the greatest impact on the uncertainty in the measurements is due to random errors and 
therefore that the data set is normally distributed. 
 
     By using the standard deviation of the mean as the uncertainty in x, we can write x as a 
confidence interval: 

 𝑥𝑥 = �̅�𝑥 ± 𝜎𝜎�̅�𝛿    (3-14) 
 

Here, we see that the absolute uncertainty δx is equal to 𝜎𝜎�̅�𝛿. With this we are stating that we 
expect 68% of any measurement of x to fall within this range.  If we had an application where we 
needed to know the value with more certainty, say 95% for example, we would write the 
confidence interval as 
  𝑥𝑥 = �̅�𝑥 ± 2𝜎𝜎�̅�𝛿 (3-15) 
 
     For most experimental purposes, the 68% confidence is sufficient, but the experimenter needs 
to consider the specific application when determining how much confidence is sufficient. 

 
     4.  Example.  Suppose that we wish to determine the muzzle speed of a projectile launcher by 
setting the launcher to a particular angle and measuring the distance the projectile travels. We can 
get a good estimate of the random variations by conducting the experiment 10 times. The data 
from such an experiment is shown in Table 3-8. You can use Eq. 3-10 to calculate the mean and 
Eq. 3-13 to calculate the standard deviation of the mean. You can also use Excel to do the 
calculations by using the AVERAGE function to determine the mean and the STDEV function to 
determine the standard deviation. Either way, the results are: 
 

 mean horizontal distance, x  = 122.49 cm 
standard deviation, xσ  = 2.1299 cm 
SDOM = 0.6735 cm. 

 
     The confidence interval for the horizontal distance 
using the mean and the standard deviation is 
 

x = (122 ± 2) cm. 
 
Use the standard deviation as the uncertainty when you are 
interested in the scatter of individual measurements. For 
instance, you might want to conduct the experiment at dif-
ferent launch angles, but only have time to conduct one 
trial at each additional angle. You could use the standard 
deviation from the angle you did ten trials at as an estimate 

Trial 
Number 

Horizontal Distance, x 
(±0.1cm) 

1 118.5 
2 123.7 
3 120.4 
4 123.1 
5 123.6 
6 121.3 
7 123.3 
8 126.3 
9 123.0 
10 121.7 

Table 3-8.  Measurements for 
Projectile Launch Experiment. 
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of the uncertainty for the other trials; i.e., take the uncertainty in the horizontal distance as δx = 2 
cm. 
 
      The confidence interval for the horizontal distance using the mean and the SDOM is 
 

x = (122.5 ± 0.7) cm. 
 
Use the SDOM as the uncertainty when you are interested in how uncertain you are in the mean 
of the data set. For instance, if you were only going to conduct the experiment ten times at one 
launch angle, you would use the SDOM as the uncertainty in your horizontal distance. i.e., δx = 
0.7 cm. Notice that the reported value for the horizontal distance is more precise when the 
SDOM is used as the absolute uncertainty of the horizontal distance, δx, than when the standard 
deviation is used as δx. 
 
     5.  Counting Experiments.  Some experiments will count the number of times a random event 
occurs in a given amount of time, such as the decay of a radioactive source. 
 
        a) Single counting measurement. You may measure the activity of one or more radioactive 
samples by counting the number of radioactive decays within a certain time period. Each nucleus 
in the radioactive source decays at a random moment, so that the number of decays within a 
certain time period is not completely predictable. We would not, in fact, expect the number of 
decays in two different time periods of the same length to be exactly the same. Because of this 
randomness of the process, we use the best estimate of the number of decays per unit time as the 
measure of activity. The correct way to report this measurement, including its random variability, 
is to give a best estimate (an actual measurement) and the range that we are confident that the 
quantity lies within. The measurement of the number of radioactive decays, C, in a given time 
period, reported as a confidence interval, is  
 
 CCC actual δ±=  (3-16) 
 
     We estimate the absolute uncertainty, δC using the Square-Root Rule for Counting 
Experiments8 which states that the uncertainty in any counted number of random events, as an 
estimate of the true average number, is the square root of the counted number. Thus, the number 
of counts, C, within some fixed time period is 
 
 actualactual CCC ±=  (3-17) 
 
Equation 3-17 is based on a single measurement of the number of counts. 
 
        b)  Repeated counting measurements. If more than one measurement is taken for the same 
radioactive sample, then it is reasonable to expect the reliability of our measurement to increase. 
Stated in another way, we would expect the absolute uncertainty to decrease. Applying the mean,  
and standard deviation of the mean to this application, we arrive at Equation 3-18 as a more 

                     
8 Ibid., p. 48. 
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general expression for the number of counts in which N represents the number of identical 
measurements, 
 

 
N

C
CC actual

actual ±=  (3-18) 

 
For example, if an experiment for the number of counts in a 1 minute interval was conducted five 
times with results of 325, 337, 329, 339, and 371, then  
 

 counts340.2
5

1701
5

371339329337325
==

++++
=actualC  

 

counts8.249
5

340.2
==δC  

 
( )counts8340±=C 9 

 
     As with the standard deviation of the mean, this confidence interval means that we are 68% 
confident that the “true” number of counts in one minute from this source lies between 332 and 
348. Note that this procedure is exactly equivalent to measuring the count rate by taking a longer 
count; if rather than averaging five 1-minute counts, we took one 5-minute count and recorded 
1701 counts and divided by 5 minutes, we would get the same number of counts in 5 minutes 
with the same uncertainty. 
 
F.  Graphing 
 
     Graphs are often a necessary and useful means of presenting experimental data.  When 
properly developed and carefully prepared, a graph can make data easier to analyze, evaluate and 
compare.  
 
     1.  General Requirements.  Graphs prepared for laboratory requirements will contain the 
information listed here and illustrated in Figure 3-10: 

• A meaningful title describing what the graph portrays, more descriptive than y vs. 
x. 

• Correct variables used on the correct axes (independent quantity on the 
horizontal-axis and dependent quantity on the vertical-axis). 

• Labeled axes that show the property being graphed (time, volume, length, etc.) 
and the units (s, mL, cm, etc.).   

• Equation of trendline. 

                     
9 Ibid., problem 4.19, p. 115. 
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• Square of Pearson correlation coefficient (R2). 
• Slope of the trendline with uncertainty (from regression statistics) and correct 

units. 
• Legend when two or more data sets are present on the same graph 
• Error bars on data points. 

y = 3.8752x + 0.043
R2 = 0.9964

m= (3.88 ± 0.08) s2/m
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Figure 3-10. Sample Graph 

 
2. Linear vs. Non-Linear Relationships.  The relationships between variables may have 

many forms. The R2 value represents how well the trendline fits the data. An R2 value of 1 means 
the trendline goes through every single data point and an R2 of 0 means the there is no correlation 
between the independent and dependent quantities. A trendline with negative slope will lead to 
an R2 value between -1 and 0. While an R2 value of one (1.00) is optimal, this will rarely be the 
result when dealing with experimental data because of random errors. Although the R2 parameter 
can tell us if there is a relationship between two variables, it doesn’t always tell us whether the 
relationship is a linear or a non-linear relationship. See Figure 3-13 for an example of a data set 
with a R2 correlation > 0.95, yet the underlying relationship is not linear, the period, T, is a 
function of l , not l. Oftentimes, a more detailed statistical analysis technique would be 
required to determine whether a relationship is a linear or a non-linear relationship. This is a 
discussion best covered in MA206, Probability and Statistics. For the purposes of PH205 and 
PH206 “test the model” labs, graphing of data will only be performed after a model equation has 
been derived. From derived model equations, lab groups will be able to determine the 
relationship between the dependent and independent variables before graphing the collected data. 
 
     3.  Non-Linear Relationships.  When the points plotted represent experimental data, the points 
will probably not lie on a simple curve. Most theoretical relationships between variables have 
simple lines of best fit. However, experimental errors can cause plotted experimental points to 
deviate from simple curves. In spite of this deviation, a simple curve is usually drawn. The curve 
does not have to go through all the points, but should generally follow them. Figure 3-11 shows 
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three different curves drawn through the same set of points to illustrate how a correctly drawn 
curve should look. It is important in experimental work to obtain a sufficiently large number of 
data points to be sure of the shape of the curve.  
 

 
Figure 3-11.  Drawing Curves Through Experimental Points. 

 
     4.  Linear Relationships.  It is usually desirable to plot experimental data so that one obtains a 
straight line. When a graph is a straight line, it is easy to obtain additional information from the 
graph and to express the relationship between the dependent and independent quantities as an 
equation. 
 

In order to obtain a straight line graph, we are often required to manipulate our model 
equation and graph something other than the independent vs. the dependent variables. The 
independent variable is the physical parameter, such as length, mass, etc., that you control in the 
experiment and whose value determines the dependent variable.  The dependent variable is the 
physical parameter that you observe or measure based on changes to the independent variable. 
The independent/dependent quantities are the correct form of the variable from the linearized 
model equation (in the y=mx+b form).   

 
An example of this process is determining the acceleration due to gravity using a simple 

pendulum.  The acceleration due to gravity, g, can be calculated by measuring the period and 
length of a simple pendulum.  The mathematical relationship between period, T, and length, l, is 
given by 

 2π=
lT
g

 (3-19) 

In order to write this equation in the familiar straight line format (y = mx + b), we can leave the 
square root terms √𝑙𝑙 and �𝑔𝑔 or to make it more clear we square both sides of the equation.  It 
then becomes 
 

 
2

2 4 0T l
g
π 

= + 
 

 (3-20) 

We call Equation 3-20 our model equation for the experiment.  Here we can see that the 
independent variable is the length, l and the independent quantity (“x”) is also l.  Whereas, the 
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dependent variable is the period, T, and the dependent quantity (“y”) is the period squared, T2 

(See Appendix I on Linearization).  If we use the dependent and independent quantities, the 

slope (“m”) of the line is 
24π

g
 and the y-intercept (“b”) is zero. After collecting data in the 

laboratory, reported in Table 3-9, we plot the length vs the square of the period, and the graph 
should resemble Figure 3-10.  
 

Length, l 
(± 0.02 m) 

Period, T 
(±0.01s) 

Period Squared, T2 
(s2) 

Uncertainty in T2, δ(T2) 
(s2) 

1.50 2.38 5.7 0.1 
1.25 2.22 4.9 0.1 
1.00 2.03 4.12 0.08 
0.85 1.82 3.31 0.07 
0.70 1.71 2.92 0.06 
0.55 1.46 2.13 0.04 
0.40 1.24 1.54 0.03 
0.25 1.00 1.00 0.02 
0.10 0.63 0.397 0.008 
0.05 0.44 0.194 0.004 

Table 3-9. Data Collected for a Simple Pendulum. 
 
     Note:  For directly measured quantities where the absolute uncertainty of the measured 
quantity for each measurement of the parameter does not change, we report the absolute 
uncertainty in the column heading. For the calculated value of the period squared, we apply the 
method of partial derivatives to find the absolute uncertainty of the period squared. Thus, we 
make a new column reporting each unique absolute uncertainty of the calculated parameter. 
 

A powerful tool of linearization is that we can determine the uncertainty in the slope by 
performing linear regression on the data using Microsoft Excel.  See Appendix H (Graphing, 
Linear Regression, and Curve Fitting) for instructions on how to perform linear regression.  After 
completing regression, the uncertainty is displayed as part of the slope’s confidence interval on 
the graph. 

 
All of the information from tabular, graphical and numerical analysis of data can be 

combined together in a clear and concise format as shown in Figure 3-12 below. This 
information now becomes an effective tool for you to present your data and results and support 
your conclusions. 
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Once the value for the slope is determined, the acceleration due to gravity can be calculated by 
re-arranging the terms of the slope in Equation 3-20, 
 

2

2

4

4

slope
g

g
slope

π

π

=

=
 

/ms3.856686
4

2

2π
=g  

2m/s10.2363577=g  
 
To determine the absolute uncertainty of the acceleration due to gravity, we must use the either 
the Introductory or Intermediate Method for propagation of error as described in Section B.  Here 
we will use the intermediate method for this example. 
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Figure 3-12.  Final Linearized Graph with Slope and Uncertainty
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( )
( )

2
2
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2
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3.857 s /m

.257 m/s .

g

g

πδ

δ

=

=

 

The acceleration due to gravity expressed as a confidence interval is  

  g = (10.2 ± 0.3) m/s2 
**For more detailed information on how and why to linearize a model equation as well as 
another example of the process, see Appendix J (Linearization). 

 
     5.  Common Mistake.  A common mistake is a failure to understand the difference between 
the dependent/independent variables and the independent/dependent quantities.  In the example 
above, this mistake would lead to plotting the period, T, vs. the length l (not T2 versus l).  Doing 
this would lead to a graph that looks like Figure 3-13. 

Figure 3-13. Example Graph of Incorrect Linearization 
 
The solid trend line above represents the linear fit to our collected data. Although this trend line 
has a correlation of R2 > 0.95 (quite close to 1!), the data points plotted do not represent a linear 
relationship. The data points appear to form a curve.  As we saw above in Equation 3-20 and in 
Section 4, the linear relationship is not between period and length, but rather between the square 
of the period and the length. 

Linear Fit:
y = 1.2238x + 0.7125

R² = 0.9586

Non-Linear Fit:
y = 1.9862x0.498

R² = 0.9986
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Chapter 4  
 

Laboratory Reports 
 

A.  Introduction 
 
     1.  Lab Reports.  Written laboratory reports are a means of communicating to the reader the 
results of an experiment, the method used to obtain those results, and the conclusions of the 
experimenter as to the reliability and meaning of the results.   
 
     2.  Audience.  The writer must remember when preparing the report that it is for the reader 
and, as such, should be tailored to the intended audience.  A student working on a subset of a 
larger work may write a report for a lead experimenter.  This audience would obviously require 
almost no background into the need for or theory of the experiment.  Similarly, an article for 
publication in a technical journal may assume a certain level of knowledge by the reader.  In 
contrast, a report written for publication in a general journal of undergraduate research would 
require a much more thorough introduction to satisfy the broad range of backgrounds of different 
readers. 
 
     3.  Format.  Because of the different possible audiences for reports, there is no standard 
format or procedure. However, all reports begin with some form of introduction which states the 
purpose of the experiment and the scientific model or hypothesis to be tested.  This is followed 
by a description of the experiment itself and the results obtained.  The report ends with a 
discussion of the important conclusions drawn from the results and suggestions for future work.  
The written report also includes acknowledgments and references as appropriate.   
 
     4.  Primary Literature.  Each scientific discipline and journal has its own requirements as to 
the specific format for written reports of scientific information.  Few undergraduate programs 
include what is known as primary literature in introductory courses.  If you continue to study in a 
science discipline you will find that reading and understanding primary literature is one of the 
most essential skills a scientist must have.   
 
B.  Chemistry Written Laboratory Report  
 
     Cadets in CH151 and CH152 will have the opportunity to read primary literature and are 
required to write laboratory reports, or sections of laboratory reports, using the format described 
below.  
 
    1.  Cover Sheet.  Ensure that the cover sheet is formatted as specified in the Documentation of 
Academic Work.  Include all lab group members listed in alphabetical order. 
 
    2.  Abstract.  The abstract may be the most important 200 words a scientist ever writes.  This 
short paragraph completely summarizes from start to finish the purpose, result, and significance 
of your experiment.  The abstract should start by providing a basic framework, then move into 
the specific background of the study.  The results of the study should be clearly stated, followed 
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by a conclusion that puts the results in perspective relative to currently known information in the 
field of study, and in the greater scientific community.   A well-written abstract stimulates the 
reader's interest in the study.  
 
    3.  Introduction.  Clearly state the scientific purpose of the experiment.  Provide background 
that explains why this experiment is important.  Give sufficient detail so the reader understands 
how your experiment fits into the big picture, what information the experiment will provide, and 
why it is important.  Present the fundamental concepts, reactions or equations and explain how 
these concepts, reactions or equations apply to your experiment.  State any assumptions that were 
made and explain the impact on the experiment.    
 
    4.  Materials and Methods.  This technical section describes the equipment, supplies, and 
procedures used in the experiment.  Include sufficient detail so that a reasonably competent 
individual could independently replicate your experiment and obtain the same result.  If needed, 
include a picture or diagram and refer to it when describing the procedures used to perform the 
experiment.  State what quantities were actually measured during the laboratory and the method 
used to obtain these quantities (for example, we measured the optical absorbance of the solution 
at 470 nm with the MicroLabTM spectrophotometer).  Present the uncertainty of each measured 
quantity and discuss how these uncertainties were determined.  Describe statistical methods used 
in determining the measured quantities.   
 
    5.  Results.  This section consists of data and observations from the experiment, but does not 
include any assessment regarding the meaning of the data.  Present all of your directly measured 
data, physical constants, or other experimental parameters (with uncertainties and proper units).  
The data should be easy to understand and are often presented in a table format with supporting 
graphs when applicable.  Include text, captions, or legends as needed to explain how the data is 
organized or presented. 
 
    6.  Discussion.  This section interprets the facts presented in the results section and is often the 
longest section in the written report.  As needed, refer back to the Introduction section and 
address the significance of the results relative to the scientific objective of the experiment.  
Specifically discuss any evidence of systematic and/or random error in the data.  If systematic 
error is the dominant form of error, identify at least one source that is consistent with the 
direction of your discrepancy and analyze its effects on the measurement of the objective 
quantity.  If random error is the dominant form of error, identify at least one likely source and 
analyze its effects on the measurement of the objective quantity.  Focus on the relative 
uncertainties of the measured quantities and identify which quantity made the largest random 
error contribution.  
 
    7.  Conclusion.  A good conclusion begins with a clear and concise summary of the research 
findings.  Make an assessment of how well your results satisfied your experimental objective.  
Suggest changes to the experiment that would reduce the dominant form of error and propose 
future research steps to be taken to discover more information relevant to the scientific principles 
explored in the report.      
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    8.  References.  List all of the sources you used in preparing your report in accordance with 
the Documentation of Academic Work. 
 
C.  Physics Written Laboratory Report  
 
     In PH205/6 and PH255/6, you will be required to write a laboratory report.  Use the format 
below and address each of the items listed in each section.  
 
    1.  Cover Sheet.  Ensure that the cover sheet is formatted as specified in the Documentation of 
Academic Work.  Include all lab group members listed in alphabetical order. 
 
    2.  Introduction.  State the scientific objective(s) of the experiment, for example, validate a 
theory or measure a particular quantity, and how you accomplished that objective.  Give 
sufficient detail so the reader understands not only what you are doing, but why. 
 
    3.  Theory.  Present the fundamental physics theories involved.  Start with common equations 
that your readers will accept without question.  Ensure that you define all symbols and 
parameters you use.  State any assumptions you must make in order to use these equations must 
also be stated in this section.  While the equations demonstrate the appropriate physics in the 
experiment, you need to show how these equations apply specifically to each experiment by 
rearranging these equations into a model equation and identifying the quantities to be measured 
from the model equation.  If linear regression is used to analyze the data, explicitly show the 
relationship between the slope of the regression line and the objective quantity. 
 
    4.  Procedure.  Explain the “mechanics” of the experiment itself.  The first step is to briefly 
explain the experimental apparatus.  Include a picture or diagram and refer to it when describing 
the procedures used to perform the experiment.  State what physical quantities are actually 
measured during the laboratory and the method used to obtain these quantities (for example, we 
measured the voltage across resistor 1 with a digital multimeter).  Present the uncertainty of each 
measured quantity and discuss how these uncertainties were determined.  Describe statistical 
methods used in determining the measured quantities.   
 
    5.  Results.  Present all of your directly measured data, physical constants, or other 
experimental parameters (with uncertainties and proper units).  You will also present any 
statistical analysis and/or regression results.  Present any plots of your data on a full-page graph.  
Present the calculation of the objective quantity using the derived equations developed in the 
Theory and Procedure sections.  Present the calculation of the absolute uncertainty of the 
objective quantity.  Present the rationale behind selecting the method used to determine the 
absolute uncertainty. The details of the calculations may be placed in an appendix, but in any 
case, complete calculations must be present.  Report the experimental value as a confidence 
interval.   
 
    6.  Discussion.  Present a number line with the objective quantity and reference value 
confidence intervals.  Discuss the significance of the number line (precision, accuracy, dominant 
form of error).  Discuss any evidence of systematic and/or random error in the data.  If 
systematic error is the dominant form of error, identify at least one source that is consistent with 
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the direction of your discrepancy and analyze its effects on the measurement of the objective 
quantity.  Revisit the Theory section and address the significance of the systematic error 
introduced by your assumptions.  If random error is the dominant form of error, identify at least 
one likely source and analyze its effects on the measurement of the objective quantity.  Focus on 
the relative uncertainties of the measured quantities and identify which quantity made the largest 
random error contribution.  
 
    7.  Conclusion.  Make an assessment of how well you met your experimental objective.  One 
of the goals of experimental procedure is to learn from the tasks performed and pave the way to 
the next iteration of the experiment, building on what you have learned, not repeating the same 
procedure.  Suggest a change(s) to the experiment that would reduce the dominant form of error 
(refer to the number line and propagation of error calculation as appropriate for establishing 
priority).   
 
    8.  End Notes.  List all of the sources you used in preparing your report in accordance with the 
Documentation of Academic Work. 
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Appendix A 
 

Naming Binary Compounds 
 
A.  Introduction 
 
     A thorough knowledge of nomenclature will greatly aid your development in chemistry.  You 
must learn the basic rules and use the rules frequently as the course progresses.  A binary 
compound is one that is formed from two elements.  For most binary compounds, the ending -ide 
is substituted for the usual ending of the element that appears last in the name.  Many elements 
form cations or anions whose charges can be predicted by their positions on the periodic table.  
The more you understand the periodic table, the less you need to memorize. 
 
B.  Metal-Nonmetal Binary Compounds.  
 
   1.  Name the metal first followed by the nonmetal with -ide substituted for the usual ending.  If 
the metal can have more than one oxidation state, more than one compound may be formed with 
a given nonmetal, such as FeCl2 and FeCl3.  Systematic naming uses Roman numerals to specify 
the oxidation state of the metal. It reduces the amount of memory work required.  Examples: 
 
 FeCl2:   Fe2+, iron(II) chloride  
 FeCl3:   Fe3+, iron(III) chloride 
 Cu2O:    Cu+, copper(I) oxide 
 CuO:     Cu2+, copper(II) oxide 
 SbCl5:   Sb5+, antimony(V) chloride 

 
    2.   Metals which do not have more than one oxidation state are exceptions to the Roman 
numeral system.  These exceptions include Group 1A metals, Group 2A metals, and the AZCA 
metals (Aluminum, Zinc, Cadmium, and Silver).  Examples: 
 
 NaCl    sodium chloride  
 Mg3N2   magnesium nitride 
 Ag2O   silver oxide 
 
    3.  The algebraic sum of the oxidation numbers of the metal and the nonmetal must be zero 
since the compound has no net charge. Examples: 

 
 NaCl:   Na+ (Group 1A) +1 oxidation state x 1 sodium ion =   +1 
  Cl− (Group 7A) -1 oxidation state x 1 chloride ion  =   −1    

                                                                                               0 
 

 Mg3N2:  Mg2+ (Group 2A) +2 oxidation state x 3 magnesium ions  = +6 
    N3− (Group 5A)   −3 oxidation state x 2 nitride ions          = −6 

    0 
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 Ag2O:  Ag+ (AZCA metal)  +1 oxidation state x 2 silver ions  =  +2 
  O2−  (Group 6A)   -2 oxidation state x 1 oxide ion        =  −2   

  0  
  

C.  Nonmetal - Nonmetal Binary Compounds.   
 
     This system uses the Greek prefixes mono- (1), di- (2), tri- (3), tetra- (4), penta- (5), etc., to 
indicate the number of atoms of each nonmetal that is present.  The nonmetal that is lowest in 
electronegativity (the electronegativity values for each element as shown on most Periodic 
Tables) is named first, followed by the other nonmetal with -ide substituted for the usual ending.  
Variable oxidation states are common among many of the nonmetals; therefore, the naming 
system used must allow for this.  Examples: 
 
 NO nitrogen monoxide  
 NO2 nitrogen dioxide   
 N2O dinitrogen monoxide 
 PCl3 phosphorous trichloride  
 PCl5 phosphorous pentachloride 
 
D.  Common Names and Other Exceptions to the Rules 
 
     1. Certain binary compounds have acquired nonsystematic names by which they are known 
exclusively.  These include water (H2O) and ammonia (NH3).  Notice that the formula of the last 
compound is inverted with respect to the customary position of the hydrogen and nonmetal. 
 
     2. Compounds containing polyatomic ions are not binary compounds but are named by 
similar rules.  Treat the atoms that make up the polyatomic ion as a single entity.  The only 
change to the name of the polyatomic ion is to drop the word “ion”.  The ammonium ion, NH4

+, 
is treated as if it were a Group IA metal.  Examples: 
 
 KCN  potassium cyanide  
 Cu(OH)2   copper(II) hydroxide 
 CoSO4  cobalt(II) sulfate 
 NH4CO3 ammonium carbonate 
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NOMENCLATURE FLOWCHART FOR BINARY COMPOUNDS 
 
     This flow chart will help you to name binary compounds.  It is based upon the premise that 
you are able to: 
 
    1.  classify elements as metals or nonmetals. 
 
    2.  determine whether an element will form a cation or an anion. 
 
    3.  identify the charge of that cation or anion. 

 
Once you have mastered the above concepts, follow the directions in the diagram below to 
correctly name binary compounds. 
 

  

Does
the binary 

compound contain 
a metal?

Is  
the metal 

from Group 1A/2A,
Al, Zn, Cd, 

or Ag?

Then name of the metal is the element.  
The stem of the non-metal has –ide added to it.
Examples:  
NaBr sodium bromide
CaO calcium oxide
AgNO3 silver nitrate (drop “ion” from nitrate ion)
Ag3N     silver nitride

Compound contains two nonmetals.  The 
name of each nonmetal is preceded by a 
Greek prefix which gives the number of 
atoms of that element in the compound 
(exception:  mono is not used with the first 
element).  The first element is given the 
element name.  The stem of the second 
element has –ide added to it.

N2O5 dinitrogen pentoxide
CO2 carbon dioxide

The name of the metal is followed by a 
Roman numeral in parentheses which 
gives the charge of the cation.  The stem of 
the nonmetal has –ide added to it.

CuCl copper (I) chloride
NiSO4 nickel (II) sulfate (drop “ion” from 

sulfate ion)
NiS nickel (II) sulf ide

Some Exceptions
NH4Cl      ammonium chloride
NH4NO3 ammonium nitrate
HCN        hydrogen cyanide
NH3           ammonia
H2O          water

YES

YES

NO

NO
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Appendix B 
 

Visual Descriptions of Solutions 
 
A.  Introduction 
 
     Although modern technology now makes photographs of solutions practical, it is still 
necessary to accurately describe the physical properties of solutions.  Including the elements 
explained here will allow you to provide a more thorough description of the observations you 
make about solutions.  Additionally, paying close attention to the subtle changes in a solution's 
color, clarity, or presence of solid particles may provide you valuable insights into the chemical 
reactions that may be reflected in some of these changes.   
 
B.  Clarity 
 
    Clear - no visible particles, light passes through solution without scattering 
 
    Translucent - no visible particles, some light passes through solution, some light is scattered 
 
    Cloudy - visible particles, light is scattered, but some light passes through 
 
    Opaque - large or very dense particles completely block light 
 
C.  Solid Particles 
 
    If particles are present, the sample is a heterogeneous mixture normally classified as one of 
several types of suspension.  Consider the particle size, color, density (whether they tend to sink 
to the bottom, float at the surface, or adhere to the walls of the container).  Assess if the particles 
clump together, form fibrous connections, or disperse evenly throughout the sample.   
 
D.  Three Factors used in Describing Colors:   
 
     The Inter-Society Color Council of the National Bureau of Standards (ISCC-NBS) defines 
specific terms to be used when describing color.  The information provided here is a simplified 
version of the ISCC-NBS color system. 
 
    1.  Lightness:  dark, medium, light 
 
    2.  Saturation:  grayish, moderate, strong, vivid 
 
  deep    =   dark and strong 
  pale     =    light and grayish 
          brilliant  =    light and strong 
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    3.  Hue: commonly used descriptions      
     
red       purple 
reddish orange      reddish purple 
orange       purplish red 
orange yellow      purplish pink 
greenish yellow     pink 
yellowish green     brownish pink 
green       brownish orange 
bluish green      reddish brown 
greenish blue      brown 
blue       yellowish brown 
purplish blue      olive 
violet       olive green 
 
 
 

White Pale
Green

Light
Green

Brilliant
Green

Gray Grayish
Green

Green Strong
Green

Vivid
Green

Lightness

light

medium

dark Black
Dark
Green

Deep
Green

Saturation
(no hue) grayish moderate strong vivid

Example

Hue = Green
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Appendix C 
 

Naming Organic Compounds 
 
A.  Introduction 
 
     The ability to interpret structures of organic compounds is important in understanding basic 
Chemistry, Biochemistry and more advanced science information.  Learning how to name and 
draw organic structures opens up an entire language of scientific knowledge that greatly 
increases your ability to interpret and discuss fields that affect human health, the environment, 
and industrial processes.  The naming rules for organic compounds, or carbon containing 
compounds, can be found in your textbook and several examples are on your Reference Data 
Cards.   
 
B.  General Rules for Naming an Organic Molecule 
 
    1.  Identify the longest chain of carbon atoms. This is referred to as the “backbone” of the 
organic molecule.  The longest chain must include multiple bonds. 
 
    2.  Identify any multiple bonds, substituent groups, and/or functional groups present in the 
molecule. 
 
        a)  Bonds within the backbone: 
 
           i.  If there are only single bonds in a hydrocarbon chain, then the molecule belongs to the 
general group “alkane” and will have an “–ane” suffix. 
 ii.  If there are double bonds (one or more in a hydrocarbon backbone), then the molecule 
belongs to the general group “alkene” and will have the “–ene” suffix. 
 iii.  If there are triple bonds (one or more in a hydrocarbon backbone), then the molecule 
belongs to the general group “alkyne” and will have the “–yne” suffix.     
     
        b)  Substituent groups.  Any of the groups identified in Table C-1: Common Substituent 
Groups for Organic Molecules. 

 
Table C-1:  Common Substituent Groups for Organic Molecules 
Formula Name Formula Name 

-CH3 methyl -Br Bromo 
-CH2CH3 or –C2H5 ethyl -Cl Chloro 
-CH2CH2CH3 propyl -F Fluoro 
-CH(CH3) 2 isopropyl -CN Cyano 
-CH=CH 2 ethenyl (vinyl) -NO2 Nitro 
–C6H5 phenyl -NH2 amino 
– CH2C6H5 benzyl -D deuterio 
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        c)  Functional groups.  Any of the functional groups drawn in the Functional Groups Table 
on your Chemistry Reference Data Card (RDC).  The presence of one of these groups will 
change the ending on the name of the molecule. 
 
    3.  Sequentially number the carbon atoms in the backbone.  A carbon atom with a functional 
group takes precedence over a multiple bond.  A multiple bond takes precedence over a 
substituent group.  The carbon chain will be numbered so that the functional group carbon has 
the lowest number. If there is not a functional group, then the carbon chain will be numbered so 
that the multiple bond carbon has the lowest number.  If there is not a functional group or a 
multiple bond, then the carbon chain will be numbered so that the substituent group carbon has 
the lowest number. 
 
    4.  Name the molecule.   Numbers are used to identify the carbons with substituent groups and 
multiple bonds.  When different substituent groups are present, list them in alphabetical order 
with the number in front identifying the specific carbon to which they are attached.  Endings on 
the name should be appropriate for the functional group present or for bonding within the 
backbone. 
 
EXAMPLE 1, an alkane:  CH3CH2CH2CH2CH3   (which may also be written C5H12)  The name 
of the molecule is “pentane”. 
 

 
 
Explanation:  There are five carbons, thus we utilize the prefix pent- for “five” and end the name 
with the suffix “–ane” which lets the reader know all the carbon to carbon bonds in the 
hydrocarbon are single. 
 
Cyclic alkanes all have the general formula CnH2n and the carbons are arranged to form a ring.  
They are named based on the number of carbons with the prefix “cyclo-”. 
 
EXAMPLE 2, a cycloalkane.  C5H10    The name of this molecule is “cyclopentane”. 
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Explanation:  There are five carbons, thus we utilize the prefix pent- for “five” and use the suffix 
“–ane” which lets the reader know all of  the carbon to carbon bonds are single and the prefix 
cyclo- tells the reader that it is a cycloalkane. 
 
EXAMPLE 3, an alkene.  CH3CH2CH2CHCH2 (which may also be written C5H10),  
is “1-pentene”. 

 
 
Explanation:  There are five carbons, thus we utilize the prefix pent- for “five” and use the suffix 
“–ene” which lets the reader know at least one of  the carbon to carbon bonds is a double bond 
and specifically there is one double bond and it is located between the first and the second 
carbon in the chain.   
 
EXAMPLE 4,  an alkene:  CH3CH2CHCHCH3  (which may also be written C5H10) is 
 “2-pentene”. 

 
 
Explanation:  There are five carbons, thus we utilize the prefix pent- for “five” and use the suffix 
“–ene” which lets the reader know at least one of  the carbon to carbon bonds is a double bond 
and specifically there is one double bond and it is located between the second and third carbon in 
the chain. 
 
EXAMPLE 5, an alkene:  C5H8, the name is “1-cyclopentene.” 

 
Explanation:  There are five carbons, thus we utilize the prefix pent- for “five” and use the suffix 
–ene which lets the reader know at least one of  the carbon to carbon bonds is a double bond and 
specifically there is one double bond located between the first and the second carbon in the chain 
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(so that it has the lowest number possible) and the prefix cyclo- tells the reader that it is a 
cycloalkene. 

 
EXAMPLE 6, an alkyne  CH3CH2CH2CCH    is  “1-Pentyne”.  
 

 
 
Explanation:  There are five carbons, thus we utilize the prefix pent- for “five” and end the name 
with the suffix “–yne” which lets the reader know at least one of  the carbon to carbon bonds is a 
triple bond and specifically there is only one triple bond and it is located between the first and 
the second carbon in the chain. 
 
What if the compound contains a functional group? 
 
EXAMPLE 7, a functional group containing molecule: 
 

 
 
Follow the Steps to name this molecule:   
Step 1.  Identify the number of carbons in the backbone:  five, so we will use the penta-prefix. 
Step 2.  Identify any multiple bonds, substituent groups, and/or functional groups:   

a. no multiple bonds so normally would follow alkane rules 
b. no substituent groups 
c. there is an alcohol functional group so it will take precedence for naming the 

molecule and the name will end in –ol, to identify it as an alcohol. 
Step 3.  Number the carbons so that the carbon with the attached functional group has the lowest 
number. 
Step 4.  Name the molecule.  The name for this molecule is “1-pentanol”. 
 
Explanation:  There are five carbons, thus we utilize the prefix pent- for “five” and end the name 
with the suffix –ol which lets the reader know it is an alcohol.  Further, the 1- in the name tells 
the reader that the alcohol functional group is attached to the end carbon, making it a primary 
alcohol. 
  
BUT what if the alcohol was on a carbon inside the carbon chain? 
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EXAMPLE 8, a molecule that has a functional group not on a terminal carbon: 
 

  
 
The name is “2-pentanol”.  
 
Explanation:  There are five carbons which demands the prefix pent- for “five” and the name will 
end in the suffix –ol which lets the reader know it is an alcohol.  Further, the 2- in the name tells 
the reader that the alcohol functional group is attached to the second carbon in the chain, making 
it a secondary alcohol. 
 
What happens when there is a substituent group and a functional group? 
 
EXAMPLE 9, a molecule with both a functional group and a substituent group: 
 

 
 
Follow the Steps to name this molecule:   
Step 1.  Identify the number of carbons in the backbone:  five, so we will use the penta-prefix. 
Step 2.  Identify any multiple bonds, substituent groups, and/or functional groups:   

d. no multiple bonds so normally would follow alkane rules 
e. there is a bromine substituent group 
f. there is an alcohol functional group so it will take precedence for naming the 

molecule and the name will end in –ol, to identify it as an alcohol. 
Step 3.  Number the carbons so that the carbon with the attached functional group has the lowest 
number. 
Step 4.  Name the molecule. The name is “3-bromo, 2-pentanol”. 
 
Explanation: There are five carbons which utilizes the prefix pent- for “five” and the name will 
end in the suffix –ol which lets the reader know it is an alcohol.  The 2-bromo tells the reader 
that the second carbon is bonded to a bromine and the 2-pentanol tells the reader that the alcohol 
functional group is attached to the second carbon in the chain, making it a secondary alcohol.  
Note that the groups are listed in alphabetical, not numeric, order. 
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Appendix D 
 

Safety Data Sheets 
 
A.  Introduction 
 
     Many chemicals have dangers associated with their use.  You can avoid these dangers by 
reading the Safety Data Sheets (SDS) (previously called Material Safety Data Sheets, or MSDS) 
for the chemicals you use.  All chemical manufacturers are required by law to provide a SDS for 
each chemical the laboratory purchases for your use.  The information given relates to the risks 
involved when using a specific chemical.  These sheets are found in a yellow binder located in 
each chemistry laboratory.   The SDS provides a wealth of information about chemicals and all 
laboratory workers rely on them to provide the information they need to work safely in the lab. 
 
B.  Interpreting an SDS 
 
     A typical SDS for sodium chloride, NaCl, is provided in this section as an example.  The 
sheet is divided into several sections:  Identification, Toxicity Hazards, Health Hazard Data, 
Physical Data, Fire and Explosion Data, Reactivity Data, Spill or Leak Procedures, and 
Additional Precautions and Comments.  The identification section provides additional names by 
which the compound is known (table salt, for example), the CAS (Chemical Abstract Service) 
number, and the Fisher catalog product numbers (Fischer Scientific is a major chemical 
supplier).  The CAS number is especially useful because you can use it to conduct searches in 
several databases to obtain more sources of information concerning the chemical. 
 
    1.  The Toxicity Hazards section contains results of studies detailing the toxicity of the 
compound in various animal and inhalation tests.  Sodium chloride is a well-studied compound, 
so many such tests have been performed.  There are several common abbreviations used: 
 
 HMN  human 
 
 IVN  Intravenous 
 
 LD50  Lethal Dose 50.  The single dose of a substance that causes the death of 
50% of an animal population from exposure to the substance by any route other than inhalation. 
  
 LDLo  Lethal Dose low.  The lowest dose of a substance introduced by any route, 
other than inhalation, reported to have caused death in humans or animals. 
  
 ORL  Oral Dose 
  
 SKN  Skin 
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Thus, the listing ORL-RAT LD50: 3000 mg/kg indicates that when NaCl was given orally to a 
test sample of rats, the dose that killed 50% of the rats was 3000 mg NaCl per kg body weight 
(BW).  Extrapolating directly from rats to humans (assuming average BW = 80 kg), it would take 
3000 mg NaCl / kg BW x 80 kg BW/person = 2.40 x 105 mg/person or 240 g / person to kill half 
the individuals in this group of exposed humans.  Obviously, the LD50 for NaCl is well above 
the amount one would expect to accidentally ingest in the lab, so NaCl does not pose a 
significant risk to you in this regard. 
 
    2.  The Health Hazard Data section indicates that inhalation, ingestion, or skin absorption may 
be harmful, and that NaCl irritates mucous membranes and the upper respiratory tract.  This may 
surprise you since table salt is a common household item and a substance we consume every day.  
However, it is well know that NaCl(s) will sting the eyes and that prolonged exposure of the skin 
to salt water can be harmful.  While spilling a small amount of NaCl on the skin will not hurt 
you, this warning illustrates the principle of trying to minimize contact with any chemical.  The 
section also gives the treatment for getting salt in the eyes: flush with water for at least 15 
minutes. 
 
    3.  The Fire and Explosion Hazard Data and Reactivity Data sections provide information 
about chemical incompatibilities and other chemical reaction dangers.  The SDS indicates that 
NaCl does not combust but that it may react with strong oxidizing agents or strong acids.  The 
steps to be taken if material is released or spilled generally refers to large, industrial amounts of 
the chemical.  Specific information will be provided in the experimental procedures for materials 
with unusual handling characteristics. 
 
    4.  Waste disposal methods are also given.  Again, they generally refer to quantities much 
larger than those used in normal laboratory experiments.  The Handling and Storage section 
gives some practical advice on how to deal with the compound, as well as recommended safety 
equipment that should be on hand. 
 
    5.  The Additional Precautions and Comments section details specific dangers associated with 
this compound.  Sodium chloride is known to react violently with lithium and bromine trifluoride 
under certain conditions.  Extreme caution should be used if these substances and NaCl are used 
in the same reaction. 
 
C.  Other Useful Sources of Safety Information 
 
    1.  The Merck Index.  Similar information in a more compact form can be found in the Merck 
Index.  This reference gives the “bottom line” on the toxicity of chemicals and their 
incompatibilities.  In the case of NaCl, the index lists under Human Toxicity:  “Not generally 
considered poisonous.  Accidental substitution of NaCl for lactose in baby formulas has caused 
fatal poisoning.”  While the information in the Merck Index is not as complete as in the MSDS, it 
is generally sufficient for our purposes.  It also provides information about the common usages 
of the chemicals listed, with special emphasis on medical usages.  References to the chemical 
literature are also provided. 
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    2.  CRC Handbook of Chemistry and Physics (CRC).  This reference contains a wide range of 
data in the area of health, safety, and environmental protection.  It also contains directions for the 
handling and disposal of laboratory chemicals.  Each lab bench has a copy of the CRC.  
 

Example Safety Data Sheet 
 

Sodium Chloride  ACC# 21105 
Section 1 - Chemical Product and Company Identification 
SDS Name: Sodium Chloride 
Catalog Numbers: AC424290030, S641212, S641350LB, S641500, S71988, S71989, S71989-1, 
S78446,S78449, S78449-1, BP358 1, BP358 10, BP358 212, BP358-1, BP358-212, BP3581, 
BP35810, BP3581000,BP358212,  XXB64017.5KG 
Synonyms: Common salt, halite, rock salt, saline, salt, sea salt, table salt 
Company Identification: 
       Fisher Scientific 
       1 Reagent Lane 
       Fairlawn, NJ 07410 
For information, call: 201-796-7100 
Emergency Number: 201-796-7100 
For CHEMTREC assistance, call: 800-424-9300 
For International CHEMTREC assistance, call: 703-527-3887S 
Section 2 - Composition, Information on Ingredients 
CAS# Chemical Name Percent EINECS/ELINCS 
7647-14-5 Sodium chloride 100  231-598-3 

Section 3 - Hazards Identification - EMERGENCY OVERVIEW 
Appearance: colorless or white. Caution! May cause respiratory tract irritation.May 
cause eye and skin irritation. May cause digestive tract irritation with nausea, vomiting, and 
diarrhea. 
Target Organs: None. 
Potential Health Effects 
Eye: May cause eye irritation.  
Skin: May cause skin irritation.  
Ingestion: Ingestion of large amounts may cause gastrointestinal irritation. Ingestion of large 
amounts may cause nausea and vomiting, rigidity or convulsions. Continued exposure can 
produce coma, dehydration, and internal organ congestion.  
Inhalation: May cause respiratory tract irritation.  
Chronic: Not available. 
Section 4 - First Aid Measures 
Eyes: Flush eyes with plenty of water for at least 15 minutes, occasionally lifting the upper and 
lower lids. Get medical aid.  
Skin: Flush skin with plenty of soap and water for at least 15 minutes while removing 
contaminated clothing and shoes. Get medical aid if irritation develops or persists. Wash clothing 
before reuse.  
Ingestion: If victim is conscious and alert, give 2-4 cupfuls of milk or water. Get medical aid.  
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Inhalation: Remove from exposure to fresh air immediately. If not breathing, give artificial 
respiration. If breathing is difficult, give oxygen. Get medical aid if cough or other symptoms 
appear.  
Notes to Physician: None  
Antidote: None reported 
 
Section 5 – Fire fighting Measures 
General Information: Wear appropriate protective clothing to prevent contact with skin and eyes. 
Wear a self-contained breathing apparatus (SCBA) to prevent contact with thermal 
decomposition products.  
Extinguishing Media: For small fires, use water spray, dry chemical, carbon dioxide or chemical 
foam.  
Auto-ignition Temperature: Not available.  
Flash Point: Not available.(estimated) Health: 1; Flammability: 0; Reactivity: 0 Explosion 
Limits, Lower: Not available. Upper: Not available. 
Section 6 - Accidental Release Measures 
General Information: Use proper personal protective equipment as indicated in Section 8.  
Spills/Leaks: Vacuum or sweep up material and place into a suitable disposal container. Avoid 
generating dusty conditions. 
Section 7 - Handling and Storage 
Handling: Use with adequate ventilation. Minimize dust generation and accumulation. Avoid 
contact with eyes, skin, and clothing. Do not ingest or inhale.  
Storage: Store in a cool, dry place. 
Section 8 - Exposure Controls, Personal Protection 
Engineering Controls: Good general ventilation should be sufficient to control airborne levels. 
Exposure Limits 
Chemical Name 

ACGIH NIOSH OSHA - Final PELs 

Sodium chloride none listed none listed none listed 
OSHA Vacated PELs: Sodium chloride: No OSHA Vacated PELs are listed for this chemical.  
Personal Protective Equipment  
Eyes: Wear safety glasses with side shields.  
Skin: Wear appropriate gloves to prevent skin exposure.  
Clothing: Wear appropriate protective clothing to minimize contact with skin.  
Respirators: A NIOSH/MSHA approved air purifying dust or mist respirator or European 
Standard EN 149. 
Section 9 - Physical and Chemical Properties 
Physical State: Solid 
Appearance: colorless or white 
Odor: odorless 
pH: Not available. 
Vapor Pressure: Not available. 
Vapor Density: Not available. 
Evaporation Rate: 
Viscosity: Not available. 
Boiling Point: 2575 deg F 
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Freezing/Melting Point:1474 deg F 
Decomposition Temperature:Not available. 
Solubility: Soluble in water 
Specific Gravity/Density:2.165 
Molecular Formula:NaCl 
Molecular Weight: 
Section 10 - Stability and Reactivity 
Chemical Stability: Stable.  
Conditions to Avoid: High temperatures.  
Incompatibilities with Other Materials: Reacts with most nonnoble metals such as iron or steel, 
building 
materials (such as cement), bromine, or trifluoride. Potentially explosive reaction with 
dichloromaleic 
anhydride + urea. Electrolysis of mixtures with nitrogen compounds may form explosive 
nitrogen trichloride.  
Hazardous Decomposition Products: Toxic fumes of sodium oxide.  
Hazardous Polymerization: Has not been reported. 
Section 11 - Toxicological Information 
RTECS#:  
CAS# 7647-14-5: VZ4725000  
LD50/LC50: 
CAS# 7647-14-5: 
Oral, mouse: LD50 = 4 gm/kg; 
Oral, rat: LD50 = 3 gm/kg;  
Carcinogenicity: 
CAS# 7647-14-5: Not listed by ACGIH, IARC, NIOSH, NTP, or OSHA.  
Epidemiology: No information reported.  
Teratogenicity: An experimental teratogen.  
Reproductive Effects: Human reproductive effects by intraplacental route: terminates pregnancy. 
Experimental reproductive effects.  
Neurotoxicity: No information reported.  
Mutagenicity: Human mutation data reported.  
Section 12 - Ecological Information 
Ecotoxicity: No information found  
Environmental Fate: No information reported.  
Physical/Chemical: No information found  
Other: No information found 
Section 13 - Disposal Considerations 
Dispose of in a manner consistent with federal, state, and local regulations. 
RCRA D-Series Maximum Concentration of Contaminants: None listed. 
RCRA D-Series Chronic Toxicity Reference Levels: None listed. 
RCRA F-Series: None listed. 
RCRA P-Series: None listed. 
RCRA U-Series: None listed. 
Section 14 - Transport Information 
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US DOT IATA RID/ADR IMO Canada TDG 
Shipping Name: Hazard Class: 
UN Number: 

No info No info No info No info 

Section 15 - Regulatory Information 
US FEDERAL  TSCA 
CAS# 7647-14-5 is listed on the TSCA inventory.  
Health & Safety Reporting List 
None of the chemicals are on the Health & Safety Reporting List. Chemical Test Rules 
None of the chemicals in this product are under a Chemical Test Rule.  
Section 12b 
None of the chemicals are listed under TSCA Section 12b.  
TSCA Significant New Use Rule 
None of the chemicals in this material have a SNUR under TSCA.  
SARA 
Section 302 (RQ) 
None of the chemicals in this material have an RQ.  
Section 302 (TPQ) 
None of the chemicals in this product have a TPQ.  
SARA Codes  CAS # 7647-14-5: acute.  
Section 313 
No chemicals are reportable under Section 313.  
Clean Air Act: This material does not contain any hazardous air pollutants. This material does 
not contain any Class 1 Ozone depletors. This material does not contain any Class 2 Ozone 
depletors.  
Clean Water Act:  None of the chemicals in this product are listed as Hazardous Substances 
under the CWA. None of the chemicals in this product are listed as Priority Pollutants under the 
CWA. None of the chemicals in this product are listed as Toxic Pollutants under the CWA.  
OSHA:  None of the chemicals in this product are considered highly hazardous by OSHA.  

STATE CAS# 7647-14-5 is not present on state lists from CA, PA, MN, MA, FL, or NJ. 
California No Significant Risk Level: None of the chemicals in this product are listed. 
European/International Regulations 
European Labeling in Accordance with EC Directives 
Hazard Symbols:  Not available.  
Risk Phrases: 
Safety Phrases: 
WGK (Water Danger/Protection)  CAS# 7647-14-5: 0 
Canada  CAS# 7647-14-5 is listed on Canada's DSL/NDSL List.  This product has a WHMIS 
classification of Not controlled.  CAS# 7647-14-5 is not listed on Canada's Ingredient Disclosure 
List. 
Exposure Limits 
Section 16 - Additional Information 
MSDS Creation Date: 12/14/1994  
Revision #18 Date: 12/12/1997 
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The information above is believed to be accurate and represents the best information currently 
available to us. However, we make no warranty of merchantability or any other warranty, 
express or implied, with respect to such information, and we assume no liability resulting 
from its use. Users should make their own investigations to determine the suitability of the 
information for their particular purposes. In no way shall Fisher be liable for any claims, losses, 
or damages of any third party or for lost profits or any special, indirect, incidental, consequential 
or exemplary damages, howsoever arising, even if Fisher has been advised of the possibility of 
such damages 
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Appendix E 
 

Rules for Significant Figures 
 
A.  Introduction 
 
     Unlike counting, measurement is never exact.  You can count exactly ten M4 rifles in the 
arms room, but if you measure the length of the rifle 10 times, using a tape measure marked each 
cm, the values are likely to differ slightly.  Table E-I presents such a set of measurements. 
 

Measurement Length(cm) 
1 82.6 
2 82.5 
3 82.5 
4 82.7 
5 82.4 
6 82.6 
7 82.5 
8 82.5 
9 82.6 
10 82.7 

Table E-1. Length of a Rifle Measurements 
 
First you must consider the uncertainty of the tape measure.  Many quality measuring devices are 
marked with their uncertainty.  If you cannot determine the uncertainty of a measuring device, a 
good rule of thumb is to use 50% of the smallest mark, which in this case gives the tape measure 
an uncertainty of ± 0.5 cm.  Note that all ten measurements agree on the first two digits of the 
measurement; differences occur in the third digit.  Which values are correct?   The accuracy of 
measurement depends on many factors as discussed in Section 3A.  Measured values are usually 
recorded with the last digit regarded as uncertain.  The data in Table E-1, combined with the 
uncertainty data, allow us to state that the length of the rifle is between 81.9 and 83.2 cm, and 
should be recorded as the average plus the uncertainty, or 82.6 ± 0.5 cm.  To determine the 
length with greater accuracy (e.g. 82.56 cm) would require a measuring device with less 
uncertainty.  Reporting of numerical values is extremely important in all sciences.  You will be 
required to be cognizant of reporting values correctly in all of your courses in mathematics, 
science, and engineering at the United States Military Academy.   
 
B.  Rules for Counting Significant Figures (Digits)   
 
    1.  In any properly reported measurement, all nonzero digits are significant.  Read the number 
from left to right and count all digits, starting with the first nonzero number.   
 
    2.  The zero presents problems, however, because it can be used in two ways: to position the 
decimal point or to indicate a measured value.  For zeros, follow these rules: 
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        a)  A zero between two other digits is always significant.  Examples: 

    
1207 contains four significant figures. 
 
40.003 contains five significant figures. 

 
        b)  Zeros to the left of all nonzero digits are not significant.  Examples: 
   

0.000163  has three significant figures. 
 
    three numbers 
 

         0.06801  has four significant figures. 
 

   four numbers 
 

        c)  Zeros that are both to the right of the decimal point and to the right of nonzero digits are 
significant.  Examples:  

0.4000 four significant figures. 
 

   0.050220  five significant figures. 
 
   803.770  six significant figures. 
 

        d)  Zeros in numbers such as 50,000 (that is, zeros to the right of all nonzero digits in a 
number that is written without a decimal point) may or may not be significant.  Without more 
information, we simply do not know whether 50,000 was measured to the nearest one, ten, 
hundred, thousand, or ten-thousand.  To avoid this confusion, scientists use exponential notation 
for writing numbers.  In exponential notation, 50,000 would be recorded as 5 x 104 or 5.0 x 104 
or 5.0000 x 104 to indicate one, two, and five significant figures, respectively. 
 
C.  Rules for Significant Figures in Rounding Off Digits   
 
     Determine the correct number of digits in the final answer and round off to this number.  In 
rounding off, you should increase the last significant figure by one if the following digit is 5 or 
greater (e.g. 549 rounded to two significant figures becomes 550).  When working through a 
problem with multiple calculations, only round off your FINAL answer.  Rounding off 
during intermediate steps can introduce errors.  
 
D.  Rules for Significant Figures in Addition and Subtraction 
 
     In addition or subtraction, the final result should contain no more place holder digits than the 
quantity that "ends" the earliest, when significant digits are read from left to right.  Align the 
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quantities to be added or subtracted on the decimal point, then perform the operation, assuming 
blank spaces are zeros.   
 
EXAMPLE 1:  Add the following numbers: 744, 2.6, 14.812 
 
SOLUTION:  Align the numbers on the decimal point and carry out the addition. 
 
    744 
      2.6 
         14.812 
    761.412 
 
The correct answer is 761.  Since one of the digits to be added (744) goes no further than the 
ones place, the final answer must therefore be rounded so that it, too, contains no digits past the 
ones place.  

EXAMPLE 2:  Add the following numbers: 49.146, 72.13, 5.9432 
 
SOLUTION:  Align the numbers on the decimal point and carry out the addition. 
 
     49.146 
     72.13 
      5.9432 
    127.2192 
 
The correct answer is 127.22.  Read from left to right, the second quantity ends first, at the 
hundredths place. The final answer should also end at the hundredths place.  Since the digit in 
the thousandths place is 5 or greater (in this case 9), the digit in the hundredths place is rounded 
up to 2.  

EXAMPLE 3:  Subtract 9.143 from 71.12496 

SOLUTION:  Align the numbers on the decimal point and carry out the subtraction. 
 
    71.12486 
    −9.143 
    61.98186  
 
The correct answer is 61.982.  Since the second quantity ends at the thousandths place, so must 
the final answer. Since the number in the ten-thousandths place is 5 or greater (in this case, 8), 
the number in the hundreds place is rounded up.  

EXAMPLE 4:  Subtract 0.055 from 7,700  

SOLUTION:  Align the numbers on the decimal point and carry out the subtraction. 
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    7,700 
    -  0.055 
    7,699.945  
 
The correct answer is 7,700 (NOT 7,699.945).  Since the last significant figure in 7,700 is in the 
hundreds place, the final answer must also end at the hundreds place.  Since the number in the 
tens place is 5 or greater (in this case, 9), the number in the hundreds place is rounded up.  
 
E.  Rules for Significant Figures in Multiplication and Division 
 
     In multiplication and division the rules are simpler.  The answer can have no more significant 
figures than the factor that has the least total number of significant figures.  In these operations, 
the position of the decimal point makes no difference. 
 
EXAMPLE 1:  Multiply 10.4 by 3.1416. 
 
SOLUTION:  10.4 x 3.1416 = 32.672,64  
 
The correct answer is 32.7.  The answer has only three significant figures because the first term 
has only three significant figures.  
 
EXAMPLE 2:  Divide 500.0 by 34.408 
 
SOLUTION:  500.0 /  34.408 = 14.5315043  
 
The correct answer is 14.53 (NOT 14.531).  The answer has only four significant figures because 
the first term has only four significant figures.  
 
EXAMPLE 3:  Divide 5,000 by 34.408 then multiply by 2.5 
 
SOLUTION:  5,000 /  34.408 * 2.5  = 363.2876075331318  
 
The correct answer is 400 (no decimal place).  The answer has only one significant figure 
because the number 5,000 has only one significant figure.  
 
COMBINED EXAMPLE:  5,324.2 + (4.0 * 33) 
 
SOLUTION:  4.0 * 33 = 132 (two significant figures, don't round until final answer) 
 
                132 
             +5,324.2 
              5,456.2 
 
The correct answer is 5,460 (no decimal point).  Because 132 has two significant figures 
(determined by the multiplication of 4.0), the significant figures end at the tens place, so the 
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significant figure in the final answer must also end at the tens place.  Note that if you rounded 
132 to 130 (2 significant figures) before the addition step, you would get an incorrect final 
answer of 5,450.  When performing a series of calculations, you may find it useful to place a 
small horizontal line above or below the last significant digit in an intermediate step. 
 
F.  Rules for Significant Figures in Logarithmic Operations 
 
     Measurements such as pH, radioactive decay and earthquakes are commonly discussed using 
a logarithmic scale for easier comparison of values that span a very wide range.  In this type of 
notation, the number before the decimal place in the answer is the power term and is equal to one 
less than the number of digits before the decimal place in the original number.  The power term 
is not included when counting significant figures.  The Mantissa is a positive number less than 1 
(i.e. the number after the decimal place).  The Mantissa contains as many significant figures as 
the number whose log was found.  Using reverse logic, the antilogarithm of a number has the 
same significant figures as the mantissa of the number whose antilogarithm was found. 
 
EXAMPLE 1:   Find the log (base ten) of 52 (two significant figures) 
 
SOLUTION:  Log(52) = 1.716003 
 

                 power term       mantissa 

The correct final answer is 1.72 (NOT  1.7).  The answer has two significant figures after the 
decimal place, the same number of significant figures that were in the original number. 
 

EXAMPLE 2:   Find the natural log (base e) of 4.45 (3 significant figures) 

SOLUTION:   ln 4.45 =  1.492904 

                power term                   
          mantissa 
 
The correct answer is 1.493 (NOT 1.49).  The answer has three significant figures after the 
decimal place, the same number of significant figures that were in the original number. 
 
EXAMPLE 3:   Find the antilog (base e) of 1.1234 

SOLUTION:   e 1.1234  = 3.0752924    

  power term     mantissa 
 

The correct answer is 3.075   (NOT 3.0753).  The answer has four significant figures, the same 
number of significant figures that were in the mantissa of the number whose antilogarithm was 
found. 
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EXAMPLE 4:  Find the pH of a solution with a [H+] of 2.8 x 10-13 M  

SOLUTION:  The digits to the left of the decimal point in a pH represent the power of 10, 
therefore, only the digits to the right of the decimal are significant.  Keeping in mind that 2.8 x 
10-13 M is the same as 0.00000000000028 M,  
 

  pH = -log (2.8 X 10-13) 
         = -log (2.8) + (-log 10-13) 
        = -0.45 + 13.00 
        = 12.55 

 
The correct answer is 12.55 (NOT 13).  There are two digits to the right of the decimal in 12.55 
because the H+ concentration had two significant figures.  
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Appendix F 
 

Uncertainty Theory and Special Cases 
 
A.  Mathematical Details for the Theory of Partial Derivatives10. 
 
     We will address the general case of a function of one variable first, (e.g.𝑓𝑓(𝑥𝑥) = 𝑥𝑥)where 𝑥𝑥 
has some known absolute uncertainty ±𝛿𝛿𝑥𝑥.  Graphically, this case can be represented by    
Figure F-1. 
 

 
Figure F-1. Graphical Representation of a Function of One Variable. 

 
If we know the functional form of 𝑓𝑓(𝑥𝑥), then the absolute uncertainty in 𝑓𝑓, 𝛿𝛿𝑓𝑓, is given by: 
 

𝛿𝛿𝑓𝑓(𝑥𝑥0) = |𝑓𝑓(𝑥𝑥0) − 𝑓𝑓(𝑥𝑥0 − 𝛿𝛿𝑥𝑥0)|. 
 

If 𝛿𝛿𝑥𝑥0 ≪ 𝑥𝑥0: 
 

∆𝛿𝛿
∆𝛿𝛿
�
𝛿𝛿0

= lim
𝛿𝛿𝛿𝛿→0

𝑓𝑓(𝑥𝑥0)−𝑓𝑓(𝑥𝑥0−𝛿𝛿𝑥𝑥0)
𝛿𝛿𝑥𝑥0

  

 
∴ 𝑓𝑓(𝑥𝑥0) − 𝑓𝑓(𝑥𝑥0 − 𝛿𝛿𝑥𝑥0) = 𝑑𝑑𝛿𝛿

𝑑𝑑𝛿𝛿
�
𝛿𝛿0
𝛿𝛿𝑥𝑥0   (F-1) 

  
 
 
 

                     
10 Taylor, John, R. An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements. 2nd ed. 
Sausalito, California: University Science Books, 1997, p.63 
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Therefore, 
                                                        𝛿𝛿𝑓𝑓 = �𝑑𝑑𝛿𝛿

𝑑𝑑𝛿𝛿
�
𝛿𝛿0
𝛿𝛿𝑥𝑥0                                            (F-2)  

To generalize to functions with more than one variable, the derivative 𝑑𝑑𝛿𝛿
𝑑𝑑𝛿𝛿

 in Equation F-2 

becomes the partial derivative 𝜕𝜕𝛿𝛿
𝜕𝜕𝛿𝛿

 and the equation can be generalized to 
 

       𝛿𝛿𝑓𝑓 = �∑ �𝜕𝜕𝛿𝛿
𝜕𝜕𝛿𝛿𝑖𝑖

𝛿𝛿𝑥𝑥𝑒𝑒�
2

𝑁𝑁
𝑒𝑒=1    (F-3) 

B.  Special Cases 
 
    1.  Uncertainty in Sums and Differences 

 
Suppose that our function of interest is solely made up of sums and differences of other 
measured quantities: 
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=∑
N

i i
i

f A x  (F-4) 

 
where Ai are fixed parameters (positive for sum terms and negative for difference terms) and xi 
are measured quantities each with associated uncertainty δxi. To find δf, we can substitute 
Equation F-4 into F-3: 
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 if i = j, Equation F-5 becomes: 
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Put another way, when our function involves only sums and differences, our resulting 
uncertainty is the sum in quadrature of the absolute uncertainties (multiplied by any fac-
tors the measured numbers are multiplied by). 
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    2.  Uncertainty in Products and Quotients. 
 
Suppose that our function of interest is solely made up of products of other measured quantities: 
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N
B
i

i

f A x  (F-7)* 

 
where A and Bi are fixed parameters and xi are measured quantities each with associated 
uncertainty δxi. To find δf, we can substitute Equation F-7 into F-3: 
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 (as long as Bi ≠ 0), Equation F-8 becomes 
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Dividing both sides of Equation F-9 by F-7, we get 
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Put another way, when our function involves only multiplications and divisions (Bi = -1) and 
raising to powers, our resulting uncertainty is the sum in quadrature of the relative 
uncertainties (multiplied by any powers the measured numbers are raised to).

                     
* Note that “Π” is the product operator similar to the summation operator “Σ.” Just as Equation H-4 represented a 
function 𝑓𝑓 = 𝐴𝐴1𝑥𝑥1 + 𝐴𝐴2𝑥𝑥2+. . . +𝐴𝐴𝑁𝑁𝑥𝑥𝑁𝑁, Equation H-7 represents a function 𝑓𝑓 = 𝐴𝐴 ∙ 𝑥𝑥1

𝐵𝐵1 ∙ 𝑥𝑥2
𝐵𝐵2 ∙ … ∙ 𝑥𝑥𝑁𝑁

𝐵𝐵𝑁𝑁 . 



 
 

 
 G-1 

 

Appendix G 
 

Error Propagation: Intermediate Method Examples 
 

 
Below you will find three examples of how to apply the method of partial derivatives as 

explained in Chapter 3, Section 3.2.   
 
Example #1: Calculate g(x) and its absolute uncertainty 

 
Given: 

x = (5.01 ± 0.03) m 
g(x) = 2x 

 
Solve: 

g = 2(5.01) 
g = 10.02 
 
Apply Equation (3-6) with g(x) and take the partial derivative 

 

 
Multiply the absolute uncertainty of x 

 
δg(x) = (2)(0.03 m)= 0.06 m 

 

Combine the uncertainty of g(x) and g(5.01) into a confidence interval 

g(x) = (10.02 ± 0.06) m 
 
 
Example #2: A ball falls from rest with uniform acceleration (5.32 ± 0.02) cm in 
(0.103 ± 0.001) s. Calculate the ball’s acceleration and its absolute uncertainty. 

 
Given: 
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Physics: The position, acceleration, and time in uniform acceleration are related by 
x – x0 = ½at2 + v0t. If we set our origin (x0) at zero and start from rest (v0 = 0), our 

acceleration will be . 
 

 
 
 
Solve: 

 
 

For a function of two (or more) variables, we calculate the partial derivatives with respect to 
each variable, and then add each term in quadrature in order to calculate the absolute uncertainty 
of our function. 

Apply Equation 3-6 to a(x,t) 

 
Take the partial derivatives with respect to x and t 

 

   
Substitute values into the variables 

     
 
Evaluate the terms 

 
Substitute the term values into the quadrature equation 

 
Combine the uncertainty and the calculated acceleration for a confidence interval 
a = (10.0 ± 0.2) m/s2
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Example #3: Calculate the density of a sphere of mass (6.90 ± 0.05) g and diameter (7.35 ± 
0.03) cm and report the density as a confidence interval. 

 
Given: Mass m = 6.90 × 10-3 kg with uncertainty δm = 0.05 × 10-3 kg and diameter d = 

7.35 × 10-2 m with uncertainty δd = 0.03 × 10-2 m. 
 

Task: Density ρ as a confidence interval. 

Physics: Definition of density: ; volume of a sphere: ; relationship 
between diameter and radius: d = 2r; method of partial derivatives 

. 

 

Solve: 

 
Substitute volume as a function of diameter into the density equation 

 
Substitute values into the density function 

 
Isolate the two variables for the density function for quadrature 

 
Take the respective partial derivatives 

 and   

Substitute the algebraic the partial derivatives and values and propagate the error 
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Rounding the uncertainty to one significant figureδρ, we get δρ = 0.5 kg/m3. Round ρ to the same 
decimal place (tenths) and get a density of 33.2 kg/m3. Reporting the density as a confidence 
interval, we get: 

 
 ρ = (33.2 ± 0.5) kg/m3

Answer 
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Appendix H 

 
Graphing, Linear Regression, and Curve Fitting 

 
 

A.  Creating a graph using Excel 
 
Many experiments will involve measuring one quantity (a dependent variable) while varying 
another quantity (the independent variable). Excel can perform a graphical and numerical analy-
sis of the relationship between these variables. 
 
Follow these instructions with your own computer and this 
data to gain familiarity with Excel. Consider a very basic set 
of data in Table 3-7, entered into an Excel spreadsheet as 
shown in Fig. H-1. 
 
The independent variable is length, l, and is measured in 
meters (m), and the dependent variable is period, T, 
measured in seconds. In order to display the relationship (or 
trend) between these two variables, create a graph of period 
vs. length. 

 
Insert a new chart by clicking the “Insert” tab on 
the Excel ribbon, clicking on “Insert Scatter or 
Bubble Chart,” and choosing “Scatter” (the upper 
left-hand choice) as in Figure H-2. This procedure 
will cause a blank chart area to appear. 
 
 The second step is to select the data that will be 
used as the source for the chart. Right click 
anywhere on the chart area and highlight “Select 
Data.” Click on “Select Data” as in Fig. H-3. 

 
Figure H-1. Sample Excel Data 

 

 
Figure H-2. Choosing an XY Scatter Plot 
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Click the “Add” button and then type in a name 
for the “Series Name” (“Data” may work). Then 
click into the “Series X Values.” Highlight the 
range of your x values in your Excel table. Click 
into “Series Y Values.” Highlight the range of 
your y values in your Excel table. Click “OK” 
twice. If your data is plotted with a solid line 
connecting each data point, right click anywhere 
in the chart area and click on “Change Chart 
Type.” Highlight the “Scatter” option and click. 

This should eliminate the solid 
line. See Fig H-4. 
If you wish to have the chart on 
its own sheet, you can move it to 
its own sheet by right clicking on 
the chart’s edge and selecting 
“Move Chart,” clicking the 
“New Sheet” button, and 
clicking “OK.” 
 
You must give titles to both of 
the axes and the graph (see Fig. 
H-5). The axis labels consist of 
the measured quantity and its 
units. The title takes a little 
thought. While the chart is a graphical representation of the dependent variable (y-axis) versus 
the independent variable (x-axis), this should not be the title of your graph! The title should show 
some level of insight into the result that you will obtain from the chart. If Excel hasn’t put in a 
placeholder title on your chart, click on “Add Chart Element” on the Excel ribbon within the 
“Design” tab for the chart, click on “Chart Title” and choose on “Above Chart.” You can now 

type your title. If Excel has put in a placeholder title on 
your chart, you can click on it and type in your title. To 
title your axes, click on “Axes Titles” and highlight 
“Primary Horizontal Axis.” Then click on “Title Below 
Axis” and type your title, including units and 
uncertainty. Title your vertical axis by click on “Axes 
Titles” and highlight “Primary Vertical Axis” and then 
click on “Rotated Title.” Type your title, including units 
and uncertainty. 
 
Your instructor may require you to put error bars on 
your data points. If your data points have different 
uncertainties, you must create a column with the 

 

 
Figure H-3. Defining the Plot’s Data. 

 

Figure H-4. Plotting the Data. 

 

 
Figure H-5. Chart Title and Named 

Axis 
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uncertainty values. If neither of the quantities have the same uncertainty, you will have to create 
a column for the uncertainty values shown in column D of Fig. H-1. To create error bars on your 
chart, select your chart and go to the Excel ribbon, choose “Design,” select “Add Chart 
Element.” and click on “Error Bars.” Choose “Error Bars with Standard Error.” Right-click on 
one of the horizontal error bars and choose “Format Error Bars.” If each of your independent 
values has the same uncertainty, choose “Fixed Value” and type in the appropriate value in the 
box. If each of your independent values has a different uncertainty, choose “Custom,” click on 
the “Specify Value” button, choose the appropriate cells for both positive and negative error 
bars, and click “OK.” Click “Close” to finish your horizontal error bars. Right click on a vertical 
error bar and choose “Format Error Bars.” Repeat the process for your dependent variable. 
 
After completing these tasks, your graph should look similar to Fig. H-6. You can make any 
modifications to the chart by clicking on the chart area and using the “Chart Tools” of “Design,” 
“Layout,” or “Format.” Refer to the Microsoft Excel User’s Guide for further guidance on for-
matting a chart. You may find that it is easier to save the chart as an object within the current 
sheet rather than as its own sheet so that you can view the tabular and graphical representations 
of your data at the same time. If you create your chart in this manner and wish to just print out 
the chart, select the chart and then print. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
B. Linear Regression Using Excel 
 

1. Curve Fitting.  The most common type of relationship you will be expected to graph is a 
linear relationships. The process of fitting a curve, in this case a line, to your experimental data is 
called linear regression. The method of linear regression (also known as least squares fit to a 
line) determines the line for which the sum of the distance from the data points to the line, when 
added in quadrature, is minimized. This is called the best-fit line. The equation for a straight line 
can be generalized as: 
 y = mx + b (H-1) 
 
where m is the slope of the line and b is the intercept on the y-axis. 
 

 
Figure H-6. Custom Error Bars Chart 
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2. Creating a Trendline.  The previous section covered the basic information needed to 
obtain a 

graphical 

representation of data. All of this information is important and forms the basis for the 
quantitative analysis of data. This section will cover the implementation of linear regression in 
Excel. It is important to note that while there are many types of regression fits, most of which are 
available through this option, the one you will most commonly use at this stage in your 
experimental development is linear regression. Therefore, since you have already created a 
chart of your data, you need to perform a sanity check and ask, “Is this data linear?” In the case 
of the example given in Figure H-5, this is not true. You should not attempt to perform a linear 
regression on a graph that is not linear. For the purposes of this manual, we can create a linear 
graph (see Figure H-7) by squaring the independent variable resulting in the following data and 
chart (if your graph is not linear, you must review the theory and equations governing the 
relationship and determine what the independent quantity must be to make the relationship 
linear). 

 
Data Regression is accessed using the 
trendline. This tool is found by 
returning to the chart and right-
clicking on one of the data points (this 
action should highlight all of the data 
points). The right-click will reveal the 
menu shown in Fig. H-8. Within this 
menu, highlight the option “Add 
Trendline” Note that there is more 
than one type of Trend/Regression 

 

 
Figure H-7. Linear Relationship Chart 

 

 
Figure H-8. Adding a Trendline 
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analysis.  Use the “Linear” 
regression type. Do not choose any 
of the other types that may be listed 
in that particular sub-menu. Ensure 
the “Linear” type is selected and 
click the buttons for “Display 
Equation on Chart” and “Display 
R-Squared Value on Chart” as 
shown in Fig. H-9. 
 
Once completed, your graph should 
look like Figure H-10. 
 
 
 
 
 
 
 
 

3. Using the Data Analysis 
Function.  In order to obtain more 
information about the regression, 
such as the uncertainty in the slope 
of the best fit line, you will use the 
Data Analysis Function. Since this 
is probably the first time you have 
been exposed to this function of 
Excel, you need to ensure that it is 
loaded and operational within the 
program. The Regression program 
resides in the Data button of the Excel ribbon. If “Data Analysis” is present on this tab (see 
Figure H-11), then your computer is ready to perform linear regression. 
 
 

 
 

 

 
Figure H-9. Format Trendline Menu 

 
Figure H-10. Graph of Experimental Data 

 
Figure H-11. Data Tab of Excel 
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If this option is missing, you need to add this option to Excel. This addition is accomplished by 
clicking on the File button on the Excel ribbon.  Select “Options” and click on the Add-Ins tab.  

Finally you will 
select “Excel Add-
ins” from the drop 
down menu and click 
“Go…” (see Figure 
H-12).  This option 
will open the 
window listing the 
options that are 
present (see Figure 
H-13) but not loaded 
in the Excel program. 
Click the box next to 
“Analysis Tool Pak.” 
Click “OK” (see 
Figure H-13). 

 
The Analysis Toolpak is the first one in the list and 
is the only one by which you need to place a check 
in the box. Be advised there may be other boxes that 
already have checks; this window does not show 
that situation. Do not “uncheck” any boxes that the 
program has already marked for installation during 
the initial set up of the program. 
 
Once the ToolPak has been loaded, click “Data” on 
the Excel ribbon. Click “Data Analysis.” The data 
analysis toolbox should appear. Scroll down and 
highlight “Regression.” Click “OK.” 
(See Figure H-14) 

 
 
 
 
 
 

 
Figure H-12. Adding Excel Options 

 
Figure H-13. Selecting the Analysis 

ToolPak 

 

 
Figure H-14. Regression Options for Data Analysis 
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Insert your x and y values by highlighting each column just like above when you entered your 
data to plot (Be careful as the Input Y Range is listed first).  For the summary output to appear 
on the same worksheet as the data (recommended), click the “Output Range” button and then 
click on the upper left-hand cell where the output is to be placed. For the program to create a new 
worksheet with the output, leave the “New Worksheet Ply” button checked. Leaving the box 
blank will create a worksheet named “Sheet N+1” where N is the number of sheets currently in 
your Excel workbook (See Figure H-15). 

Leave all other boxes unselected and click “OK.” The summary output should appear where you 
selected it to go and look like Figure H-16. 
 

 
There is an abundance of information on this worksheet, on which only a portion is applicable to 
PH205 and PH206. Consequently, for all regression output, you must delete the lines for 
ANOVA and delete all the columns to the right of Standard Error. “Dress up” your output so 
that it looks similar to Figure H-17.  This information can now be combined with the final graph 

 

 
Figure H-15. Regression Menu and Data Selection 

 
Figure H-16. Summary output from Excel linear regression 
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and data for presentation. However, while this information is needed, it is not yet merged with 
your previous results. This combination of qualitative 
and quantitative representations is the reason for 
going further than a graphical analysis of the data. The 
Summary Output shown here includes statistical data 
on the graph itself to include numerical values for the 
slope and y-intercept of the graph. As you know, 
measurements made in laboratory are not exact and 
are therefore subject to a degree of uncertainty. Linear 
Regression takes this into account and through the 
Summary Output presents the standard error of the 
slope and y-intercept as well! This information is used 
to report these values as confidence intervals. 
 
Since this output provides us with the confidence 
interval for out slope, this value and absolute uncertainty is often used to determine the objective 
quantity in experiments (see Linearization in Appendix I) and used in the propagation of error in 
that calculation as covered in Chapter 3, Section B.   
 
The final step is to update your graph by adding the confidence interval for slope below your 
R2 value.  Ensure to include any units associated with your slope.  All of the information from 
tabular, graphical and numerical analysis of data can be combined together in a clear and concise 
format as shown in Figure H-18. This information now becomes an invaluable tool for you to 
present your data and results and support your conclusions. 
 

 
Figure H-18. Final Graph with Slope and Uncertainty for Submission 

 

 
Figure H-17. Summary Output 

Modified to PH205/206 Standards 
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C.  Curve Fitting and a Least Squares Fit. 
 

A common method used to analytically find the best curve fit for a series of experimental 
points is the least-squares fit.  A least-squares fit is used to create a mathematical model for a 
combination of two or more measurements, which are known to be related by a theoretical 
concepts.  The error minimized in the curve is the sum of the squared difference, 𝛸𝛸2, between the 
mathematical model’s prediction, 𝑓𝑓(𝑥𝑥) and the experimental results, 𝑦𝑦(𝑥𝑥), shown by      
Equation H-2. 

𝛸𝛸2 = ∑(𝑓𝑓(𝑥𝑥) − 𝑦𝑦(𝑥𝑥))2   (H-2) 

 
Any mathematical model can be applied utilizing this technique to find a best fit curve once the 
𝛸𝛸2 is minimized. 
 
Lorentzian Model Example 
 
         In the example below, a step by step process is provided for how a Lorentzian curve is fit 
to a set of experimental data.  The equation for a Lorentzian curve is: 

𝑓𝑓(𝑥𝑥) = 1
𝜋𝜋
�

�12�𝑘𝑘

(𝛿𝛿−𝛿𝛿0)2−��12�𝑘𝑘�
2�   (H-3) 

 
1. Input the experimental data set into the excel file.  

 

Figure H-19. Experimental Data Table Creation 
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2. Select the Scatter Plot to graph the data. 

 

Figure H-20. Scatter Plot Creation 
 

3. Select the model, Lorentzian Curve for this example, to fit to the data to, identify 
parameters, and insert an educated guess for each parameter. 

 

Figure H-21. Building Model Equation into Spreadsheet 
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4. Build an additional column where the independent variable(s), X in this example, is the 
input for the model to predict the dependent variable. 

 
Figure H-22. Model Prediction Column 

 
5. Plot the predicted values as a line in the scatter plot in order to build the model’s 

trendline using the Select Data Tool.  The predicted data points can be formatted into a trendline 
by removing the markers and formatting the data series to a solid line with the format data series 
tool. 

 
Figure H-23. Model Trendline Creation 
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6. Construct a Difference Squared column to calculate the difference squared, where the 
difference between each experimental and predicted data is squared. 

 
Figure H-24. Difference Squared Column Creation 

 
7. Sum the difference squared data to observe the variance between the experimental data 

and the model’s fit.   

 
Figure H-25. Summation of Squared Differences 
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8. Roughly alter the parameters to get the trendline to match the experimental data.  Do not 
fully optimize the trendline yet, only a rough adjustment. 

 
Figure H-26. Rough Adjustment of Model Parameters 

 
9. Fully optimize the trendline by using the Solver Tool in the Data Tab (see the following 

section for activating the Solver Tool in Excel).  Select the Sum of the Differences Squared cell 
as the “set objective” to be minimized by changing the parameter cells.  Figure H-27 

 
Figure H-27. Solver Tool Selection 

 

 
Figure H-28. Selecting Parameters and Objective 
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Figure H-29. Finalized Model Fit Example 
 

The Lorentzian model fit is now fully optimized with a Sum of the Differences Squared value of 
0.00029.  The above steps can be utilized for fitting any curve, or model, to a set of experimental 
data with properly adjusting the theoretical model, predicted values, and parameters. 

  

Activating the Solver Function. 

         In order to optimize models, the Solver Function will be used.  The Solver Function is 
usually not activated in most Excel programs.  The following steps are to be followed in order to 
activate the add-in. 

1. Select the File tab in Excel and select the Options menu, where a pop-up will be initiated 
(see Figure H-12).  Select the Add-Ins menu and click the “Go…” button at the bottom of the 
pop-up in order to manage the Excel Add-ins. 

 
2. Click the selection box to activate the Solver Add-in.  Click the “OK” button finalize the 

activation of the Solver Function, and the Solver Function button should now be present in the 
Data tab. 

 

 
Figure H-30. Excel Add-In Window 
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Appendix I 
 

Linearization 
 

A. Overview 
 

Conducting an experiment in which a variable is adjusted with each trial allows an experimenter 
to gain additional information about the suitability of the model equation to describe the 
experimental setup as well as solve for an objective quantity.   
 
Linearization is the process of taking a model equation and using algebra to put it in slope-
intercept form, y = (m)x + b, where y is the dependent quantity (the physical parameter that the 
experimenter measures changes in), m is the slope of a graph to be generated, x is the 
independent quantity (the physical parameter that the experimenter alters), and b is the y-
intercept of the graph to be generated.  The slope and y-intercept terms will contain control 
variables (variables that do not change during the experiment). 
 
B. Why Linearize? 
 

1. Linearization simplifies and clarifies complex relationships between variables. 
 

2. Linearization allows visualization of how the dependent and independent variables 
interact.  The direction and steepness of the slope show how much changing one variable 
should effect the other.  If the results fit the line tightly they support to the model 
equation and underlying theory. 

 
3. Linearization allows for testing a wide variety of values for the independent quantity to 

see if the model equation holds under a host of different conditions. 
 

4. Using linearization makes it possible to determine uncertainty in the objective quantity, 
and can also reduce the uncertainty in said quantity. 

 
5. The y-intercept value can be used to validate the theory or help isolate systematic errors 

in measurement. 
 
C. Linearization Process 
 

1. Identify fundamental physics equations for the experiment. 
 

2. Apply physics concepts and equations to build a model equation that describes the 
relationship between the independent and dependent variables. 
 

3. Identify the independent and dependent variables in the model equation. 
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4. Use algebra to rearrange the model equation into slope-intercept form, y = (m)x + b.  This 
is the linearized model equation. 
 

5. Identify the independent and dependent quantities in the linearized model equation. 
 

6. Identify the objective quantity and control variables. 
 

7. Write an expression for the slope of your linearized model equation in terms of the 
control variables and the objective quantity (ie. slope = a combination of the objective 
quantity and control variables). 
 

8. Rearrange the expression for the slope and solve for the objective quantity.  This is the 
objective quantity equation. 
 

9. Conduct the experiment.  Collect data.  Graph the dependent quantity vs. the independent 
quantity.  Follow the steps outlined in Appendix H of the SLAM to format your graph, 
add a trendline and conduct linear regression to determine the slope and the uncertainty in 
the slope of the trendline. 
 

10. Use the propagation of uncertainty equation on the objective quantity equation from step 
8 to calculate the uncertainty of the objective quantity.  The linear regression from step 9 
provides the absolute uncertainty for the slope term. 

 
D. Sample Problems 
 

a. Example 1 – General 
 
Task:  Determine the parameter A, where during the experiment parameter B was varied and as a 
result measured changes were recorded in parameter C.  All other parameters (D and E) were 
held constant during the experiment. 

1. Identify fundamental physics equations for the experiment. 
a. Since this is a general example we do not have any principles or laws to apply. 

2. Apply physics concepts and equations to build a model equation that describes the 
relationship between the independent and dependent variables. 

a. Since this is a general example our model equation is just given. 
b. Model Equation:  4𝐷𝐷𝐶𝐶2 = 𝐴𝐴𝐴𝐴

𝐵𝐵2
 

3. Identify the independent and dependent variables in the model equation. 
a. Independent variable – B 
b. Dependent variable –  C 
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4. Use algebra to rearrange the model equation into slope-intercept form, y = (slope)x + b.  
This is the linearized model equation. 

𝐶𝐶2 = 𝐴𝐴𝐴𝐴
4𝐷𝐷𝐵𝐵2

  

𝑪𝑪𝟐𝟐 = �𝑨𝑨𝑨𝑨
𝟒𝟒𝟒𝟒
� � 𝟏𝟏

𝑩𝑩𝟐𝟐
� + 𝟎𝟎  

y = (slope)(x) + b 
5. Identify the independent and dependent quantities in the linearized model equation. 

a. Independent quantity – 1
𝐵𝐵2

 
b. Dependent quantity –  𝐶𝐶2 

6. Identify the objective quantity and control variables. 
a. Objective quantity – A 
b. Control variables – D, E 

7. Write an expression for the slope of your linearized model equation in terms of the 
control variables and the objective quantity. 

𝑠𝑠𝑙𝑙𝑠𝑠𝑠𝑠𝑑𝑑 = 𝐴𝐴𝐴𝐴
4𝐷𝐷

  
8. Rearrange the expression for the slope and solve for the objective quantity.  This is the 

objective quantity equation. 
𝐴𝐴 = 4𝐷𝐷(𝑠𝑠𝑇𝑇𝑇𝑇𝑒𝑒𝑒𝑒)

𝐴𝐴
  

9. Conduct the experiment.  Collect data.  Graph the dependent quantity vs. the independent 
quantity.  Follow the steps outlined in Appendix H to format your graph, add a trendline, 
and conduct linear regression to determine the slope and the uncertainty in the slope of 
the trendline. 

Use the propagation of uncertainty equation on the objective quantity equation from step 8 to 
calculate the uncertainty of the objective quantity. 
 
 

b. Example 2 – Conservation of Mechanical Energy 
 
Task:  Determine the spring constant of spring using a cart and mass by varying the mass 
(independent variable) and measuring changes in maximum speed (dependent variable).  
(Assume no losses due to friction or drag.) 
Control Variables (Given):  displacement of spring 
Measured quantities:  maximum speed of cart, mass of cart (including extra added masses) 

1. Identify fundamental physics equations for the experiment. 
a. Conservation of Energy 
b. Elastic Potential Energy 
c. Translational Kinetic Energy 
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2. Apply physics concepts and equations to build a model equation that describes the 
relationship between the independent and dependent variables. 

a. Conduct Conservation of Energy table 
b. List energies in initial (spring stretched, cart at rest) and final (spring relaxed, cart 

moving) states. 
c. Model Equation:  1

2
𝑚𝑚𝑣𝑣2 = 1

2
𝑘𝑘𝑥𝑥2 

3. Identify the independent and dependent variables in the model equation. 
a. Independent variable – m 
b. Dependent variable –  v 

4. Use algebra to rearrange the model equation into slope-intercept form, y = (slope)x + b.  
This is the linearized model equation. 

𝑚𝑚𝑣𝑣2 = 𝑘𝑘𝑥𝑥2 

𝑣𝑣2 =
𝑘𝑘𝑥𝑥2

𝑚𝑚
 

𝒗𝒗𝟐𝟐 = (𝒌𝒌𝝏𝝏𝟐𝟐) �
𝟏𝟏
𝒎𝒎
� + 𝟎𝟎 

y = (slope)(x) + b 
(note than m represents mass, not slope) 

5. Identify the independent and dependent quantities in the linearized model equation. 

a. Independent quantity – 1
𝑚𝑚

 
b. Dependent quantity –  v² 

6. Identify the objective quantity and control variables. 
a. Objective quantity – k 
b. Control variables – x 

7. Write an expression for the slope of your linearized model equation in terms of the 
control variables and the objective quantity. 

𝑠𝑠𝑙𝑙𝑠𝑠𝑠𝑠𝑑𝑑 = (𝑘𝑘𝑥𝑥2)  
8. Rearrange the expression for the slope and solve for the objective quantity.  This is the 

objective quantity equation. 
𝑘𝑘 = (𝑠𝑠𝑇𝑇𝑇𝑇𝑒𝑒𝑒𝑒)

𝛿𝛿2
  

9. Conduct the experiment.  Collect data.  Graph the dependent quantity vs. the independent 
quantity.  Follow the steps outlined in Appendix H to format your graph, add a trendline, 
and conduct linear regression to determine the slope and the uncertainty in the slope of 
the trendline. 

Use the propagation of uncertainty equation on the objective quantity equation from step 8 to 
calculate the uncertainty of the objective quantity. 
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